# Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response

## Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response

Applied Mathematics and Computation 218 (2011) 4341–4348 Contents lists available at SciVerse ScienceDirect Applied Mathematics and Computation jour...

Applied Mathematics and Computation 218 (2011) 4341–4348

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response q Guirong Liu ⇑, Jurang Yan School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, PR China

a r t i c l e

i n f o

Keywords: Predator–prey model Ratio-dependent Periodic solution Neutral Coincidence degree

a b s t r a c t By using a continuation theorem based on coincidence degree theory, some new and interesting sufﬁcient conditions are obtained for the existence of positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response

8 2 ðtÞ < x0 ðtÞ ¼ xðtÞ½rðtÞ  aðtÞxðt  r1 Þ  qx0 ðt  r2 Þ  m2 cðtÞx yðtÞ; y2 ðtÞþx2 ðtÞ h i hðtÞx2 ðtsðtÞÞ : y0 ðtÞ ¼ yðtÞ dðtÞ þ : m2 y2 ðtsðtÞÞþx2 ðtsðtÞÞ An example is represented to illustrate the feasibility of our main results. Ó 2011 Elsevier Inc. All rights reserved.

1. Introduction The dynamic relationship between predator and its prey has long been and will continue to be one of the dominant themes in both ecology and mathematical ecology due to its universal existence and importance. The traditional predator–prey models have been studied extensively (see, for example, [1–5] and references cited therein). Recently, there is a growing explicit biological and physiological evidence [6–8] that in many situations, especially when predators have to search for food (and, therefore, have to share or compete for food), a more suitable general predator–prey theory should be based on the so-called ratio-dependent theory, which can be roughly stated as that the per capita predator growth rate should be a function of the ratio of prey to predator abundance, and so should be the so-called ratio-dependent functional response. This is strongly supported by numerous ﬁeld and laboratory experiments and observations [9,10]. Based on the Michaelis–Menten or Holling type-II function, Arditi and Ginzburg [11] proposed a ratio-dependent function of the form

P

  cðyxÞ x cx ¼ ¼ y m þ ðyxÞ my þ x

and the following ratio-dependent predator–prey model:

8 0 cxy ; < x ¼ xða  bxÞ  myþx   : y0 ¼ y d þ fx : myþx

ð1:1Þ

q This work was supported by the Natural Science Foundation of China (No. 11001157), Tianyuan Mathematics Fund of China (No. 10826080) and the Youth Science Foundation of Shanxi Province (Nos. 2009021001-1, 2010021001-1). ⇑ Corresponding author. E-mail addresses: [email protected] (G. Liu), [email protected] (J. Yan).

4342

G. Liu, J. Yan / Applied Mathematics and Computation 218 (2011) 4341–4348

Here xðtÞ and yðtÞ represent the densities of the prey and the predator at time t, respectively. a=b is the carrying capacity, d > 0 is the death rate of the predator, and a; c; m and f =c are positive constants that stand for the intrinsic growth rate of the prey, capturing rate, half saturation constant and conversion rate of the predator, respectively. Later on, Beretta and Kuang [12], Hsu et al. [6], Jost et al. [7], and Kuang and Beretta [8] investigated system (1.1). The ratio-dependent predator–prey models with or without time delays have been studied by many researchers recently and very rich dynamics have been observed (see, for example, [13–24] and references cited therein). In view of periodicity of the actual environment, Fan and Wang [24] established veriﬁable criteria for the global existence of positive periodic solutions of a more general delayed ratio-dependent predator–prey model with periodic coefﬁcients of the form

8 h i Rt cðtÞxðtÞyðtÞ > < x0 ðtÞ ¼ xðtÞ aðtÞ  bðtÞ 1 kðt  sÞxðsÞds  myðtÞþxðtÞ ; h i f ðtÞxðt s ðtÞÞ > 0 : y ðtÞ ¼ yðtÞ dðtÞ þ myðtsðtÞÞþxðtsðtÞÞ :

ð1:2Þ

By substituting Holling type III functional response for Holling type II functional response in system (1.2), Wang and Li [23] studied a delayed ratio-dependent predator–prey model with Holling type III functional response of the form

8 h i Rt 2 ðtÞyðtÞ > < x0 ðtÞ ¼ xðtÞ aðtÞ  bðtÞ 1 kðt  sÞxðsÞds  mcðtÞx 2 y2 ðtÞþx2 ðtÞ ; h i 2 > : y0 ðtÞ ¼ yðtÞ dðtÞ þ 2 2f ðtÞx ðt2sÞ : m y ðtsÞþx ðtsÞ

ð1:3Þ

In 1991, Kuang [25] studied the local stability and oscillation of the following neutral delay Gause-type predator–prey system

(

h i 0 x0 ðtÞ ¼ rxðtÞ 1  xðtsÞþKqx ðtsÞ  yðtÞpðxðtÞÞ;

ð1:4Þ

y0 ðtÞ ¼ yðtÞ½a þ bpðxðt  rÞÞ:

As pointed out by Freedman and Wu [26] and Kuang [27], it would be of interest to study the existence of periodic solutions for periodic systems with time delay. The periodic solutions play the same role played by the equilibria of autonomous systems. In addition, in view of the fact that many predator–prey systems display sustained ﬂuctuations, it is thus desirable to construct predator–prey models capable of producing periodic solutions. In this paper, motivated by the above work, we shall study the existence of positive periodic solutions for the following neutral delay ratio-dependent predator–prey model with Holling type III functional response

8 2 ðtÞ < x0 ðtÞ ¼ xðtÞ½rðtÞ  aðtÞxðt  r1 Þ  qx0 ðt  r2 Þ  m2 cðtÞx yðtÞ; y2 ðtÞþx2 ðtÞ h i hðtÞx2 ðtsðtÞÞ : y0 ðtÞ ¼ yðtÞ dðtÞ þ : m2 y2 ðtsðtÞÞþx2 ðtsðtÞÞ

ð1:5Þ

For convenience, we will use the notations:

jf j0 ¼ max fjf ðtÞjg; t2½0;x

f ¼ 1

x

Z

x

f ðtÞdt;

0

^f ¼ 1

x

Z

x

jf ðtÞjdt;

0

where f ðtÞ is a continuous x–periodic function. In this paper, we always make the following assumptions for system (1.5). (H1) q > 0; m > 0; r1 ; r2 are four constants. sðtÞ; rðtÞ; dðtÞ; aðtÞ; cðtÞ; hðtÞ are continuous x-periodic functions. In addi > 0; aðtÞ > 0; cðtÞ > 0; hðtÞ > 0 for any t 2 ½0; x; tion, r > 0; d n o 2r . (H2) qeB < 1, where B ¼ ln A þ qA þ ð^r þ rÞx and A ¼ maxt2½0;x aðtÞ (H3) c < 2mr.  < h.  (H ) d 4

Our aim in this paper is, by using the coincidence degree theory developed by Gaines and Mawhin [28], to derive a set of easily veriﬁable sufﬁcient conditions for the existence of positive periodic solutions of system (1.5). 2. Existence of positive periodic solution In this section, we shall study the existence of at least one positive periodic solution of system (1.5). The method to be used in this paper involves the applications of the continuation theorem of coincidence degree. For the readers’ convenience, we introduce a few concepts and results about the coincidence degree as follows. Let X; Z be real Banach spaces, L : DomL  X ! Z be a linear mapping, and N : X ! Z be a continuous mapping. The mapping L is said to be a Fredholm mapping of index zero, if dimKerL ¼ codimImL < þ1 and ImL is closed in Z. If L is a Fredholm mapping of index zero, then there exist continuous projectors P : X ! X and Q : Z ! Z , such that ImP ¼ KerL; KerQ ¼ ImL ¼ ImðI  Q Þ. It follows that the restriction LP of L to DomL \ KerP : ðI  PÞX ! ImL is invertible. Denote the inverse of LP by K P .

G. Liu, J. Yan / Applied Mathematics and Computation 218 (2011) 4341–4348

4343

The mapping N is said to be L-compact on X, if X is an open bounded subset of X; QNðXÞ is bounded and K P ðI  Q ÞN : X ! X is compact. Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ ! KerL. Lemma 2.1 (Continuation theorem [28]). Let X  X be an open bounded set, L be a Fredholm mapping of index zero and N be Lcompact on X. Suppose (i) for each k 2 ð0; 1Þ; x 2 @ X \ DomL; Lx – kNx; (ii) for each x 2 @ X \ KerL; QNx – 0; (iii) degfJQN; X \ KerL; 0g – 0. Then Lx ¼ Nx has at least one solution in X \ DomL. Lemma 2.2. Assume that f ðtÞ; gðtÞ are continuous and nonnegative functions deﬁned on the interval ½a; b. Then there exists n 2 ½a; b such that

Z

b

f ðtÞgðtÞdt ¼ f ðnÞ

a

Z

b

gðtÞdt:

a

We are now in a position to state and prove our main result. Theorem 2.1. Assume that ðH1 Þ–ðH4 Þ hold. Then system (1.5) has at least one x -periodic solution with strictly positive components. Proof. Consider the following system:

8 < u01 ðtÞ ¼ rðtÞ  aðtÞeu1 ðtr1 Þ  qeu1 ðtr2 Þ u01 ðt  r2 Þ  : u0 ðtÞ ¼ dðtÞ þ 2

hðtÞe2u1 ðtsðtÞÞ m2 e2u2 ðtsðtÞÞ þe2u1 ðtsðtÞÞ

cðtÞeu1 ðtÞ eu2 ðtÞ m2 e2u2 ðtÞ þe2u1 ðtÞ

;

ð2:1Þ

;

where all functions are deﬁned as ones in system (1.5). It is easy to see that if system (2.1) has one x-periodic solution   ðu1 ðtÞ; u2 ðtÞÞT , then ðx ðtÞ; y ðtÞÞT ¼ ðeu1 ðtÞ ; eu2 ðtÞ ÞT is a positive x-periodic solution of system (1.5). Therefore, to complete the proof it sufﬁces to show that system (2.1) has one x-periodic solution. Take

n o X ¼ u ¼ ðu1 ðtÞ; u2 ðtÞÞT 2 C 1 ðR; R2 Þ : ui ðt þ xÞ ¼ ui ðtÞ; t 2 R; i ¼ 1; 2 and

n o Z ¼ u ¼ ðu1 ðtÞ; u2 ðtÞÞT 2 CðR; R2 Þ : ui ðt þ xÞ ¼ ui ðtÞ; t 2 R; i ¼ 1; 2 and denote

juj1 ¼ max fju1 ðtÞj þ ju2 ðtÞjg; t2½0;x

kuk ¼ juj1 þ ju0 j1 :

Then X and Z are Banach spaces when they are endowed with the norms k  k and j  j1 , respectively. Let L : X ! Z and N : X ! Z be

Lðu1 ðtÞ; u2 ðtÞÞT ¼ ðu01 ðtÞ; u02 ðtÞÞT and

N



u1 ðtÞ u2 ðtÞ



2 ¼4

u1 ðtÞ u2 ðtÞ

e rðtÞ  aðtÞeu1 ðtr1 Þ  qeu1 ðtr2 Þ u01 ðt  r2 Þ  mcðtÞe 2 e2u2 ðtÞ þe2u1 ðtÞ 2u1 ðtsðtÞÞ

dðtÞ þ m2 e2uhðtÞe 2 ðtsðtÞÞ þe2u1 ðtsðtÞÞ

3 5:

With these notations system (2.1) can be written in the form

Lu ¼ Nu;

u 2 X:

n o Rx Obviously, KerL ¼ R2 ; ImL ¼ ðu1 ðtÞ; u2 ðtÞÞT 2 Z : 0 ui ðtÞdt ¼ 0; i ¼ 1; 2 is closed in Z, and dimKerL ¼ codimImL ¼ 2. Therefore L is a Fredholm mapping of index zero. Now deﬁne two projectors P : X ! X and Q : Z ! Z as

1 ; u  2 ÞT ; ðu1 ðtÞ; u2 ðtÞÞT 2 X Pðu1 ðtÞ; u2 ðtÞÞT ¼ ðu

4344

G. Liu, J. Yan / Applied Mathematics and Computation 218 (2011) 4341–4348

and

1 ; u  2 ÞT ; ðu1 ðtÞ; u2 ðtÞÞT 2 Z: Qðu1 ðtÞ; u2 ðtÞÞT ¼ ðu Then P and Q are continuous projectors such that

ImP ¼ KerL;

KerQ ¼ ImL ¼ ImðI  QÞ:

Furthermore, the generalized inverse (to L) K P : ImL ! KerP \ DomL has the form

K P ðuÞ ¼

Z

t

uðsÞds 

0

1

x

Z

x

Z

0

t

uðsÞdsdt:

0

Then QN : X ! Z and K P ðI  Q ÞN : X ! X read

2

1

6x ðQNÞu ¼ 4 1

x

i 3 cðtÞeu1 ðtÞ eu2 ðtÞ u1 ðtr1 Þ rðtÞ  aðtÞe  dt 2u ðtÞ 2u ðtÞ 2 0 m e 2 þe 1 7 i 5 Rx h hðtÞe2u1 ðtsðtÞÞ dðtÞ þ dt 0 m2 e2u2 ðtsðtÞÞ þe2u1 ðtsðtÞÞ

Rx h

and

2R h

i  3 u1 ðsÞ u2 ðsÞ t e rðsÞ  aðsÞeu1 ðsr1 Þ  mcðsÞe ds  q eu1 ðtr2 Þ  eu1 ðr2 Þ 2 e2u2 ðsÞ þe2u1 ðsÞ 6 0 7 i ðK P ðI  Q ÞNÞu ¼ 4 R h 5 t hðsÞe2u1 ðssðsÞÞ dðsÞ þ m2 e2u2 ðssðsÞÞ þe2u1 ðssðsÞÞ ds 0 2 R R h i 3 Rx  u1 ðsÞ u2 ðsÞ x t e 1 dsdt  x1 q 0 eu1 ðtr2 Þ  eu1 ðr2 Þ dt rðsÞ  aðsÞeu1 ðsr1 Þ  mcðsÞe 2 e2u2 ðsÞ þe2u1 ðsÞ 0 0 x 6 7 i 4 R R h 5 x t hðsÞe2u1 ðssðsÞÞ 1 dðsÞ þ dsdt 0 x 0 m2 e2u2 ðssðsÞÞ þe2u1 ðssðsÞÞ 2

i 3 Rx h u1 ðsÞ u2 ðsÞ e t ds 1 rðsÞ  aðsÞeu1 ðsr1 Þ  mcðsÞe 2 e2u2 ðsÞ þe2u1 ðsÞ 6 x 2 0 7 h i 4

5: R 2u ðs s ðsÞÞ x hðsÞe 1 t 1 x  2 0 dðsÞ þ m2 e2u2 ðssðsÞÞ þe2u1 ðssðsÞÞ ds It is obvious that QN and K P ðI  Q ÞN are continuous by the Lebesgue Theorem, and using the Arzela–Ascoli Theorem it is not difﬁcult to show that QNðXÞ is bounded, K P ðI  Q ÞNðXÞ is compact for any open bounded set X  X. Hence N is L-compact on X for any open bounded set X  X. In order to apply Lemma 2.1, we need to search for an appropriate open, bounded subset X  X. Corresponding to the operator equation Lu ¼ kNu; k 2 ð0; 1Þ, we have

8 h i u1 ðtÞ u2 ðtÞ e > < u01 ðtÞ ¼ k rðtÞ  aðtÞeu1 ðtr1 Þ  qeu1 ðtr2 Þ u01 ðt  r2 Þ  cðtÞe ; m2 e2u2 ðtÞ þe2u1 ðtÞ h i 2u1 ðtsðtÞÞ > : u02 ðtÞ ¼ k dðtÞ þ 2 2uhðtÞe : m e 2 ðtsðtÞÞ þe2u1 ðtsðtÞÞ

ð2:2Þ

Suppose that ðu1 ðtÞ; u2 ðtÞÞT 2 X is a solution of (2.2) for a certain k 2 ð0; 1Þ. Integrating (2.2) over the interval ½0; x leads to

Z

x

rðtÞ  aðtÞeu1 ðtr1 Þ 

0

 cðtÞeu1 ðtÞ eu2 ðtÞ dt ¼ 0 m2 e2u2 ðtÞ þ e2u1 ðtÞ

ð2:3Þ

and

Z

x

dðtÞ þ

0

 hðtÞe2u1 ðtsðtÞÞ dt ¼ 0: m2 e2u2 ðtsðtÞÞ þ e2u1 ðtsðtÞÞ

That is

Z

x

aðtÞeu1 ðtr1 Þ þ

0

 cðtÞeu1 ðtÞ eu2 ðtÞ dt ¼ r x 2 2u ðtÞ 2u ðtÞ m e 2 þe 1

ð2:4Þ

and

Z 0

x

hðtÞe2u1 ðtsðtÞÞ  x: dt ¼ d þ e2u1 ðtsðtÞÞ

m2 e2u2 ðtsðtÞÞ

By (2.2), (2.4) and ðH1 Þ, we have

Rx d  u1 ðtÞ þ kqeu1 ðtr2 Þ dt 0 dt

R x Rx u1 ðtÞ u2 ðtÞ e 6 0 jrðtÞjdt rðtÞ  aðtÞeu1 ðtr1 Þ  mcðtÞe 2 e2u2 ðtÞ þe2u1 ðtÞ dt 0 i Rx h u1 ðtÞ u2 ðtÞ e dt ¼ ð^r þ rÞx: þ 0 aðtÞeu1 ðtr1 Þ þ mcðtÞe 2 e2u2 ðtÞ þe2u1 ðtÞ

ð2:5Þ

¼k

ð2:6Þ

G. Liu, J. Yan / Applied Mathematics and Computation 218 (2011) 4341–4348

4345

Z

x

aðtÞeu1 ðtr1 Þ dt 6 r x:

ð2:7Þ

0

In view of (2.7) and the periodicity of u1 ðtÞ, we ﬁnd

rx P

Z

x

aðtÞeu1 ðtr1 Þ dt ¼

Z

xþr2 r1

aðs  r2 þ r1 Þeu1 ðsr2 Þ ds ¼

r2 r1

0

Z

x

aðt  r2 þ r1 Þeu1 ðtr2 Þ dt

ð2:8Þ

0

and

rx P

Z

x

aðtÞeu1 ðtr1 Þ dt ¼

Z

xr1

aðs þ r1 Þeu1 ðsÞ ds ¼

Z

r1

0

x

aðt þ r1 Þeu1 ðtÞ dt:

ð2:9Þ

0

From (2.8) and (2.9), it is easy to see that

Z

x

aðt þ r1 Þeu1 ðtÞ þ aðt  r2 þ r1 Þeu1 ðtr2 Þ dt 6 2r x:

0

According to the mean value theorem of differential calculus, we see that there exists n 2 ½0; x such that

aðn þ r1 Þeu1 ðnÞ þ aðn  r2 þ r1 Þeu1 ðnr2 Þ 6 2r: This, together with ðH2 Þ, yields

u1 ðnÞ 6 ln

2r 6 ln A aðn þ r1 Þ

ð2:10Þ

eu1 ðnr2 Þ 6

2r 6 A: aðn þ r1  r2 Þ

ð2:11Þ

and

For any t 2 ½0; x, one can know from (2.6), (2.10), (2.11) and ðH2 Þ that

u1 ðtÞ þ kqeu1 ðtr2 Þ 6 u1 ðnÞ þ kqeu1 ðnr2 Þ þ

Z

x

0 u1 ðtr2 Þ

As kqe

 d u1 ðtÞ þ kqeu1 ðtr2 Þ dt 6 ln A þ qA þ ð^r þ r Þx ¼ B: dt

> 0, one can ﬁnd that

u1 ðtÞ 6 B;

t 2 ½0; x:

ð2:12Þ

In view of (2.2), (2.4) and (2.12), we obtain

Z

u1 ðtÞ u2 ðtÞ e rðtÞ  aðtÞeu1 ðtr1 Þ  qeu1 ðtr2 Þ u0 ðt  r2 Þ  cðtÞe dt 1 m2 e2u2 ðtÞ þ e2u1 ðtÞ 0  Z x Z x Z x u ðtr Þ 0 cðtÞeu1 ðtÞ eu2 ðtÞ e 1 2 u ðt  r2 Þ dt 6 dt þ jrðtÞjdt þ aðtÞeu1 ðtr1 Þ þ 2 2u ðtÞ q 1 2u1 ðtÞ 2 m e þ e 0 0 0 Z x Z x 0 0 B B u1 ðt  r2 Þ dt ¼ ð^r þ r Þx þ qe u1 ðtÞ dt: 6 ð^r þ rÞx þ qe

x

ju01 ðtÞjdt ¼ k

0

x

Z

0

0

This, together with ðH2 Þ, implies that

Z 0

x

ju01 ðtÞjdt 6

1 ð^r þ r Þx: 1  qeB

ð2:13Þ

Since ðu1 ðtÞ; u2 ðtÞÞT 2 X, there exist ni ; gi 2 ½0; x ði ¼ 1; 2Þ such that

ui ðgi Þ ¼ max fui ðtÞg:

ui ðni Þ ¼ min fui ðtÞg; t2½0;x

ð2:14Þ

t2½0;x 2

From (2.3), (2.14) and inequality a2 þ b P 2ab, we have

xðr  aeu1 ðg1 Þ Þ 6

Z

x

rðtÞ  aðtÞeu1 ðtr1 Þ dt ¼

0

Z 0

x

cðtÞeu1 ðtÞ eu2 ðtÞ dt 6 m2 e2u2 ðtÞ þ e2u1 ðtÞ

Z 0

x

cðtÞeu1 ðtÞ eu2 ðtÞ 1 cx; dt ¼ 2m 2meu2 ðtÞ eu1 ðtÞ

which, together with ðH3 Þ, implies that

u1 ðg1 Þ P ln

  2mr  c :  2ma

ð2:15Þ

From (2.13) and (2.15), one can ﬁnd that, for any t 2 ½0; x,

u1 ðtÞ P u1 ðg1 Þ 

Z

x 0

ju01 ðtÞjdt P ln

  2mr  c 1 ð^r þ rÞx ¼: b1 :   2ma 1  qeB

ð2:16Þ

4346

G. Liu, J. Yan / Applied Mathematics and Computation 218 (2011) 4341–4348

It follows from (2.12) and (2.16) that

ju1 j0 6 maxfjBj; jb1 jg ¼: b2 :

ð2:17Þ

According to (2.5) and Lemma 2.2, we know that there exists f 2 ½0; x such that

 d e2u1 ðfsðfÞÞ ¼ : m2 e2u2 ðfsðfÞÞ þ e2u1 ðfsðfÞÞ h Set f  sðfÞ ¼ d þ kx, where d 2 ½0; x and k is an integer. Then

 d e2u1 ðdÞ ¼ : 2u ðdÞ þe 1 h

ð2:18Þ

m2 e2u2 ðdÞ

In view of (2.14), (2.17), (2.18) and the monotonicity of the function

x2 , x2 þl

one can ﬁnd that

 d e2u1 ðdÞ e2b2 6 2 2u ðn Þ 6 2 2u ðn Þ 2u ðdÞ  2 2 1 2 2 þ e2b2 þe m e h m e and

 d e2u1 ðdÞ e2b2 P 2 2u ðg Þ P 2 2u ðg Þ :  2 2 þ e2u1 ðdÞ 2 2 þ e2b2 m e m e h Further, it follows from ðH4 Þ that

! d  h 1 u2 ðn2 Þ 6 b2 þ ln  2 m2 d

ð2:19Þ

! d  h 1 u2 ðg2 Þ P b2 þ ln  : 2 m2 d

ð2:20Þ

and

In addition, it follows from (2.2), (2.5) and ðH1 Þ that, for any t 2 ½0; x,

Z 0

Z hðtÞe2u1 ðtsðtÞÞ dt 6 dðtÞ þ 2 2u ðt s ðtÞÞ 2u ðt s ðtÞÞ m e 2 þe 1

x

Z u0 ðtÞ dt ¼ k 2

x

0

x

jdðtÞjdt þ

Z

0

0

x

hðtÞe2u1 ðtsðtÞÞ ^ þ dÞ  x; dt ¼ ðd þ e2u1 ðtsðtÞÞ

m2 e2u2 ðtsðtÞÞ

which, together with (2.19) and (2.20), implies that for any t 2 ½0; x,

u2 ðtÞ 6 u2 ðn2 Þ þ

Z

x

ju02 ðtÞjdt

0

! d  h 1 ^  6 b2 þ ln  þ ðd þ dÞx ¼: b3 2 m2 d

and

u2 ðtÞ P u2 ðg2 Þ 

Z

x

0

ju02 ðtÞjdt

! d  h 1 ^  P b2 þ ln   ðd þ dÞx ¼: b4 : 2 m2 d

Hence,

ju2 j0 6 maxfjb3 j; jb4 jg ¼: b5 :

ð2:21Þ

From (2.2), (2.12) and (2.21), one can ﬁnd that for any t 2 ½0; x,

 ju01 ðtÞj ¼ k rðtÞ  aðtÞeu1 ðtr1 Þ  qeu1 ðtr2 Þ u01 ðt  r2 Þ 

 cðtÞeu1 ðtÞ eu2 ðtÞ 1 6 jrj0 þ jaj0 eB þ qeB ju01 j0 þ jcj0 2m m2 e2u2 ðtÞ þ e2u1 ðtÞ

and

 ju02 ðtÞj ¼ k dðtÞ þ

 hðtÞe2u1 ðtsðtÞÞ 6 jdðtÞj þ jhðtÞj 6 jdj þ jhj : 0 0 2u ðt s ðtÞÞ þe 1

m2 e2u2 ðtsðtÞÞ

These, together with ðH2 Þ, yield

ju01 j0 6

  1 1 B ¼: b6 : jrj þ jaj e þ jcj 0 0 0 1  qeB 2m

ð2:22Þ

and

ju02 j0 6 jdj0 þ jhj0 ¼: b7 :

ð2:23Þ

4347

G. Liu, J. Yan / Applied Mathematics and Computation 218 (2011) 4341–4348

From (2.17), (2.21)–(2.23), we have

kuk ¼ juj1 þ ju0 j1 6 b2 þ b5 þ b6 þ b7 : In addition, it follows from ðH3 Þ and ðH4 Þ that the system of algebraic equations

8 u u eu1  c 2 e2u12e 2 2u1 ¼ 0; < r  a m e þe : d þh 

e2u1 m2 e2u2 þe2u1

ð2:24Þ

¼0

have a unique solution ðu1 ; u2 ÞT 2 R2 . Moreover, a single calculation yields

!   lcd  r h ; u2 ¼ u1 þ ln l;  h a

u1 ¼ ln where l ¼

qﬃﬃﬃﬃﬃﬃﬃ  d    T h  . Set b ¼ b2 þ b5 þ b6 þ b7 þ b0 , where b0 is taken sufﬁciently large such that the unique solution ðu1 ; u2 Þ of m2 d

(2.24) satisﬁes

     T    ðu1 ; u2 Þ  ¼ u1 þ u2 < b0 : Clearly, b is independent of k. We now take

 

n

 

o

X ¼ ðu1 ðtÞ; u2 ðtÞÞT 2 X : ðu1 ðtÞ; u2 ðtÞÞT  < b : This satisﬁes condition (i) in Lemma 2.1. When ðu1 ðtÞ; u2 ðtÞÞT 2 @ X \ KerL ¼ @ X \ R2 ; ðu1 ðtÞ; u2 ðtÞÞT is a constant vector in R2 with ju1 j þ ju2 j ¼ b. Thus, we have

" QN

u1 u2

#

2 6 ¼4

u

u

eu1  c 2 e2u12e 2 2u1 r  a m e þe e2u1 þh  d m2 e2u2 þe2u1

3 7 5–

" # 0 : 0

This proves that condition (ii) in Lemma 2.1 is satisﬁed. Taking J ¼ I : ImQ ! KerL; ðu1 ; u2 ÞT ! ðu1 ; u2 ÞT , a direct calculation shows that

2 6 degfJQN; X \ KerL; 0g ¼ sgn det 6 4







eu1  ceu1 eu2 a  2m2 h

2u 2u 2 e 1 2u 2u 2 2 2 ðm e þe 1 Þ

m2 e

2u 2u 1e 2 2u 2u ðm2 e 2 þe 1 Þ2

e

ceu1 eu2

2u 2u 2 e 1 2u 2u 2 2 2 ðm e þe 1 Þ

 2m2 h

2u 2u 1e 2 2u 2u ðm2 e 2 þe 1 Þ2





m2 e

e

3

( 7  7 ¼ sgn 2m2 a h 5



)



e3u1 e2u2 ðm2 e2u2 þ e2u1 Þ2 



– 0:

By now we have proved that X satisﬁes all the requirements in Lemma 2.1. Hence, (2.1) has at least one x-periodic solution. Accordingly, system (1.5) has at least one x-periodic solution with strictly positive components. The proof of Theorem 2.1 is complete. h Remark 2.1. From Theorem 2.1, we can see that the deviating arguments positive periodic solution of system (1.5).

r1 ; r2 ; sðtÞ have no effect on the existence of

Remark 2.2. It is easy to see that ðH4 Þ is also the necessary condition for the existence of positive x-periodic solutions of system (1.5). Remark 2.3. From the proof of Theorem 2.1, we see that Theorem 2.1 is also valid for both advance type and mixed type if

q ¼ 0. Consequently, we can obtain the following corollary. Corollary 2.1. Assume that ðH1 Þ; ðH3 Þ and ðH4 Þ hold. Then the following delayed ratio-dependent predator–prey model with Holling type III functional response

8 cðtÞx2 ðtÞ > < x0 ðtÞ ¼ xðtÞ½rðtÞ  aðtÞxðt  r1 Þ  m2 y2 ðtÞþx2 ðtÞ yðtÞ; h i > : y0 ðtÞ ¼ yðtÞ dðtÞ þ 2 2 hðtÞx2 ðts2ðtÞÞ m y ðtsðtÞÞþx ðtsðtÞÞ has at least one x-periodic solution with strictly positive components.

4348

G. Liu, J. Yan / Applied Mathematics and Computation 218 (2011) 4341–4348

Next consider the following neutral ratio-dependent predator–prey model with state dependent delays

8 2 ðtÞ < x0 ðtÞ ¼ xðtÞ½rðtÞ  aðtÞxðt  r1 Þ  qx0 ðt  r2 Þ  2 cðtÞx yðtÞ; m y2 ðtÞþx2 ðtÞ h i 2 ðtdðt;xðtÞ;yðtÞÞÞ hðtÞx : y0 ðtÞ ¼ yðtÞ dðtÞ þ 2 2 ; m y ðtdðt;xðtÞ;yðtÞÞÞþx2 ðtdðt;xðtÞ;yðtÞÞÞ

ð2:25Þ

where dðt; x; yÞ is continuous functions and x-periodic functions with respect to t. Theorem 2.2. Suppose that ðH1 Þ–ðH4 Þ hold. Then system (2.25) has at least one x -periodic solution with strictly positive components. Proof. The proof is similar to the proof of Theorem 2.1 and hence is omitted here. h In order to illustrate the feasibility of our results, we give the following example. Example 2.1. In system (1.5), let m ¼ 1; q ¼ 14 ; rðtÞ ¼ 3  cosð12ptÞ; aðtÞ ¼ 7 þ sinð12ptÞ; cðtÞ ¼ 2 þ sinð12ptÞ; dðtÞ ¼ 3  sinð12ptÞ; hðtÞ ¼ 4 þ cosð12ptÞ. Further, a straightforward calculation shows that

^r ¼ r ¼ 3;

c ¼ 2;

 ¼ 3; d

 ¼ 4; h

1 6

x¼ ; A¼1

and

B ¼ ln A þ qA þ ð^r þ r Þx ¼

1 þ 1 ¼ 1:25: 4

 < h.  In addition, Hence, c < 2mr and d

1 4

qeB ¼ e1:25 ¼ 0:8726 < 1: Consequently, all the conditions in Theorem 2.1 hold. Using Theorem 2.1, we know that system 1.5 has at least one 16-periodic solution with strictly positive components. References [1] Z. Zhang, Z. Hou, L. Wang, Multiplicity of positive periodic solutions to a generalized delayed predator–prey system with stocking, Nonlinear Anal. 68 (2008) 2608–2622. [2] X. Ding, J. Jiang, Positive periodic solutions in delayed Gause-type predator–prey systems, J. Math. Anal. Appl. 339 (2008) 1220–1230. [3] X. Hu, G. Liu, J. Yan, Existence of multiple positive periodic solutions of delayed predator–prey models with functional responses, Comput. Math. Appl. 52 (2006) 1453–1462. [4] J. Cui, Y. Takeuchi, Permanence, extinction and periodic solution of predator–prey system with Beddington–DeAngelis functional response, J. Math. Anal. Appl. 317 (2006) 464–474. [5] S.M. Moghadas, M.E. Alexander, Dynamics of a generalized Gause-type predator–prey model with a seasonal functional response, Chaos, Solitons and Fractals 23 (2005) 55–65. [6] S.B. Hsu, T.W. Hwang, Y. Kuang, Global analysis of the Michaelis–Menten type ratio-dependent predator–prey system, J. Math. Biol. 42 (2001) 489–506. [7] C. Jost, O. Arino, R. Arditi, About deterministic extinction in ratio-dependent predator–prey models, Bull. Math. Biol. 61 (1999) 19–32. [8] Y. Kuang, E. Beretta, Global qualitative analysis of a ratio-dependent predator–prey system, J. Math. Biol. 36 (1998) 389–406. [9] R. Arditi, N. Perrin, H. Saiah, Functional response and heterogeneities: an experiment test with cladocerans, OIKOS 60 (1991) 69–75. [10] I. Hanski, The functional response of predator: worries bout scale, TREE 6 (1991) 141–142. [11] R. Arditi, L.R. Ginzburg, Coupling in predator–prey dynamics: ratio-dependence, J. Theor. Biol. 139 (1989) 311–326. [12] E. Beretta, Y. Kuang, Global analysis in some delayed ratio-dependent predator–prey systems, Nonlinear Anal. TMA 32 (1998) 381–408. [13] S. Kovács, K. Kiss, M. Farkas, Qualitative behaviour of a ratio-dependent predator–prey system, Nonlinear Anal. RWA 10 (2009) 1627–1642. [14] T. Saha, M. Bandyopadhyay, Dynamical analysis of a delayed ratio-dependent prey–predator model within ﬂuctuating environment, Appl. Math. Comput. 196 (2008) 458–478. [15] X. Liu, G. Li, G. Luo, Positive periodic solution for a two-species ratio-dependent predator–prey system with time delay and impulse, J. Math. Anal. Appl. 325 (2007) 715–723. [16] B. Dai, N. Zhang, J. Zou, Permanence for the Michaelis–Menten type discrete three-species ratio-dependent food chain model with delay, J. Math. Anal. Appl. 324 (2006) 728–738. [17] D. Xiao, W. Li, M. Han, Dynamics in a ratio-dependent predator–prey model with predator harvesting, J. Math. Anal. Appl. 324 (2006) 14–29. [18] M.U. Akhmet, M. Beklioglu, T. Ergenc, V.I. Tkachenko, An impulsive ratio-dependent predator–prey system with diffusion, Nonlinear Anal. RWA 7 (2006) 1255–1267. [19] Y.H. Fan, W.T. Li, Global asymptotic stability of a ratio-dependent predator–prey system with diffusion, J. Comput. Appl. Math. 188 (2006) 205–227. [20] D.L. DeAngelis, J.N. Holland, Emergence of ratio-dependent and predator-dependent functional responses for pollination mutualism and seed parasitism, Ecol. Model. 191 (2006) 551–556. [21] K. Ryu, I. Ahn, Positive solutions for ratio-dependent predator–prey interaction systems, J. Differential Eqns. 218 (2005) 117–135. [22] M. Wang, Stationary patterns for a prey–predator model with prey-dependent and ratio-dependent functional responses and diffusion, Phys. D: Nonlinear Phenom. 196 (2004) 172–192. [23] L.L. Wang, W.T. Li, Periodic solutions and permanence for a delayed nonautonomous ratio-dependent predator–prey model with Holling type functional response, J. Comput. Appl. Math. 162 (2004) 341–357. [24] M. Fan, K. Wang, Periodicity in a delayed ratio-dependent predator–prey system, J. Math. Anal. Appl. 262 (2001) 179–190. [25] Y. Kuang, On neutral delay logistic Gause-type predator–prey systems, Dyn. Stab. Syst. 6 (1991) 173–189. [26] H.I. Freedman, J. Wu, Periodic solutions of single species models with periodic delay, SIAM J. Math. Anal. Appl. 23 (1992) 689–701. [27] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993. [28] R.E. Gaines, J.L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977.