Pure and Applied Mathematics

Pure and Applied Mathematics

PURE AND APPLIED MATHEMATICS Arnold Sommerfeld, Partial Differential Equations in Physics Reinhold Baer, Lineiir Algebra and Projective Geometry Herbe...

595KB Sizes 83 Downloads 4033 Views

PURE AND APPLIED MATHEMATICS Arnold Sommerfeld, Partial Differential Equations in Physics Reinhold Baer, Lineiir Algebra and Projective Geometry Herbert Busemann and Paul Kelly, Projective Geometry and Projective Metrics Stefan Bergman and M. Schiffer, Kernel Functions and Elliptic Vol. 4 Difl?rentiul Equations in Mathematical Physics Ralph Philip Boas, Jr., Entire Functions Vol. 5 Vol. 6 Herbert Busemann, The Geometry of Geodesics VOl. 7 Claude Chevalley, Fundamentul Concepts of Algebra Vol. 8 Sze-Tsen Hu, Homotopy Theory A. M. Ostrowski, Solution of Equations in Euclidean and Banach Vol. 9 Spaces, Third Edirion of’ Solution of Equations and Systems of Equations J. Dieudonne, Troutisc on Analysis: Volume I , Foundations of Vol. 0 Modern Analysis; Volume 11; Volume III; Volume I V ; Volume V ; Volume VI VOl. 1 * S. I. Goldberg, Curvciture and Homology VOl. 2* Sigurdur Helgason, Different i d Geometry and Symmetric Spaces T. H. Hildebrandt, Introduction to the Theory of Integration Vol. 3 Shreeram Abhyankar Local Analytic Geometry Vol. 4 Vol. 15* Richard L. Bishop and Richard J. Grittenden, Geometry of Manifolds Vol. 16* Steven A. G a d , Point Set Topology Barry Mitchell, Theory of’ Categories Vol. 17 VOl. 18 Anthony P. Morse, A Thc~)rj) of Sets Gustave Choquet, Topology Vol. 19 Z . I. Borevich and I. R . Shafarevich, Number Theory VOl. 20 Jose Luis Massera and Juan Jorge Schaffer, Linear Di’erential Vol. 21 Equations and Function Spaces Richard D. Schafer, An Introduction to Nonassociative Algebras Vol. 22 Vol. 23* Martin Eichler, Introduction to the Theory of Algebraic Numbers and Functions Vol. 24 Shreeram Abhyankar, Resolution of Singularities of Embedded Algebraic Surfuces FranCois Treves, Topolo~gical Vector Spaces, Distributions, and Vol. 25 Kernels Vol. 26 Peter D. Lax and Ralph S. Phillips, Scattering Theory Vol. 27 Oystein Ore, The Four Color Problem Vol. 28* Maurice Heins, Complex Function Theory

VOl. 1 VOl. 2 VOl. 3

*Presently out of print

Vol. 29 Vol. 30 Vol. 31 Vol. 32 VOl. 33 Vol. 34* VOl. 35 Vol. 36 Vol. 37 Vol. 38 VOl. 39 Vol. 40* Vol. 41 * Vol. 42 Vol. 43 VOl. 44 45 Vol. 46 VOl. 47


Vol. 48 VOl. 49 Vol. 50 Vol. 51 Vol. 52 VOl. 53* VOl. 54 VOl. 55 Vol. 56

R. M. Blumenthal and R. K. Getoor, Markou Processes and Potential Theory L. J. Mordell, Diophantine Equations J. Barkley Rosser, Simplijied Independence Proofs: Boolean Valued Models of Set Theory William F. Donoghue, Jr., Distributions and Fourier Trangorms Marston Morse and Stewart S. Cairns, Critical Point Theory in Global Analysis and Differential Topology Edwin Weiss, Cohomology of Groups Hans Freudenthal and H. De Vries, Linear Lie Groups Laszlo Fuchs, InJnite Abelian Groups Keio Nagami, Dimension Theory Peter L. Duren, Theory of H P Spaces Bod0 Pareigis, Categories and Functors Paul L. Butzer and Rolf J. Nessel, Fourier Analysis and Approximation: Volume I , One-Dimensional Theory Eduard Prugovetki, Quantum Mechanics in Hilbert Space D. V. Widder, An Introduction to Transform Theory Max D. Larsen and Paul J. McCarthy, Multiplicatiue Theory of Ideals Ernst-August Behrens, Ring Theory Morris Newman, Integral Matrices Glen E. Bredon, Introduction to Compact Transformation Groups Werner Greub, Stephen Halperin, and Ray Vanstone, Connections, Curvature, and Cohomolog y : Volume I , De Rham Cohomology of Mangolds and Vector Bundles Volume 11, Lie Groups, Principal Bundles, and Characteristic Classes Volume Ill, Cohomology of Principal Bundles and Homogeneous Spaces Xia Dao-Xing, Measure and Integration Theory of InjiniteDimensional Spaces: Abstract Harmonic Analysis Ronald G. Douglas, Banach Algebra Techniques in Operator Theory Willard Miller, Jr., Symmetry Groups and Theory Applications Arthur A. Sagle and Ralph E. Walde, Introduction to Lie Groups and Lie Algebras T. Benny Rushing, Topological Embeddings James. W. Vick, Homology Theory: A n Introduction to Algebraic Topology E. R. Kolchin, Differential Algebra and Algebraic Groups Gerald J. Janusz, Algebraic Number Fields A. S. B. Holland, Introduction to the Theory of Entire Functions

VOl. 57 Vol. 58 VOl. 59 Vol. 60 Vol. 61 Vol. 62 Vol. 63* Vol. 64 Vol. 65 Vol. 66 Vol. 67 Vol. 68 Vol. 69 Vol. 70 Vol. 71 Vol. 72 Vol. 73 VOl. 74

Vol. 75 Vol. 76 Vol. 77 Vol. 78 Vol. 79 Vol. 80 VOl. 81

Vol. 82 Vol. 83

Vol. 84 Vol. 85 Vol. 86

Wayne Roberts and Dale Varberg, Convex Functions H. M. Edwards, Ricmann's Zeta Function Samuel Eilenberg, Automata, Languages, and Machines: Volume A , Volume B Morris Hirsch and Stephen Smale, Diflerential Equations, Dynamical Systems, and Linear Algebra Wilhelm Magnus, Noneuclidean Tesselations and Their Groups FranCois Treves, Busic Linear Partial Differential Equations William M. Boothby, An lntroduction to Differentiable Manifolds and Riemannian Geometry Brayton Gray, Homotopy Theory: A n Introduction to Algebraic Topology Robert A. Adams, Sobolev Spaces John J. Benedetto, Spectral Synthesis D. V. Widder, The Heat Equation Irving Ezra Segal, Mathen!utical Cosmology and Extragalactic Astronomy I. Martin Isaacs, Character Theory of Finite Groups James R. Brown, Ergodic Theory and Topological Dynamics C. Truesdell, A First Course in Rational Continuum Mechanics: Volume I , General Concepts K. D. Stroyan and W. A. J. Luxemburg, Introduction to the Theory of Infinitesimals B. M. Puttaswamaiah and John D. Dixon, Modular Representations of Finite Groups Melvyn Berger, Nonlinearity and Functional Analysis: Lectures on Nonlinearity Problems in Mathematical Analysis George Gratzer, Lattice Theory Charalambos D. Aliprantis and Owen Burkinshaw, Locally Solid Riesz Spaces Jan Mikusinski, The Bochner Integral Michiel Hazewinkel, Formal Groups and Applications Thomas Jech, Set Theory Sigurdur Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces Carl L. DeVito, Functional Analysis Robert B. Burckel, An Introduction to Classical Complex Analysis C. Truesdell and R. G. Muncaster, Fundamentals of Maxwell's Kinetic Theory of u Simple Monatomic Gas: Treated as a Branch of Rational Mechanics Louis Halle Rowen, Polynomial Identities in Ring Theory Joseph J. Rotman, An Introduction to Homological Algebra Barry Simon, Functional Integration and Quantum Physics

Vol. 87 Vol. 88 Vol. 89 Vol. 90 Vol. 91 Vol. 92 93 94 Vol. 96 V Ol . 97 VOl. VOl.

Vol. 98 Vol. 99 VOl. 100





Vol. 103 Vol. 104

Vol. Vol. Vol. Vol. Vol.

105 106 107 108 109

Vol. Vol. Vol. Vol.

110 111 112 113

Vol. 114 Vol. 115

Dragos M. Cvetkovic, Michael Doob, and Horst Sachs, Spectra of Graphs David Kinderlehrer and Guido Stampacchia, A n Introduction to Variational Inequalities and Their Applications Herbert Seifert, W. Threlfall, A Textbook of Topology Grzegorz Rozenberg and Art0 Salomaa, The Mathematical Theory of L Systems Donald W. Kahn, Introduction to Global Analysis Eduard Prugovekki, Quantum Mechanics in Hilbert Space, Second Edition Robert M. Young, An Introduction to Nonharmonic Fourier Series M. C. Irwin, Smooth Dynamical Systems John B. Garnett, Bounded Analytic Functions Jean Dieudonne, A Panorama of Pure Mathematics: As Seen by N . Bourbaki Joseph G. Rosenstein, Linear Orderings M. Scott Osborne and Garth Warner, The Theory of Eisenstein Systems Richard V. Kadison and John R. Ringrose, Fundamentals of the Theory of Operator Algebras: Volume 1, Elementary Theory; Volume 2, Advanced Theory Howard Osborn, Vector Bundles: Volume 1, Foundations and Stiefel- Whitney Classes Avraham Feintuch and Richard Saeks, System Theory: A Hilbert Space Approach Barrett O’Neill, Semi-Riemannian Geometry: With Applications to Relativity K. A. Zhevlakov, A. M. Slin’ko, I. P. Shestakov, and A. I. Shirshov, Rings that Are Nearly Associative Ulf Grenander, Mathematical Experiments on the Computer Edward B. Manoukian, Renormalization E. J. McShane, Unijied Integration A. P. Morse, A Theory of Sets, Revised and Enlarged Edition K. P. S. Bhaskara-Rao and M. Bhaskara-Rao, Theory of Charges: A Study of Finitely Additive Measures Larry C. Grove, Algebra Steven Roman, The Umbra1 Calculus John W. Morgan and Hyman Bass, editors, The Smith Conjecture Sigurdur Helgason, Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions E. R. Kolchin, Differential Algebraic Groups Isaac Chavel, Eigenvulues in Riemannian Geometry

W. D. Curtis and F. R . Miller, Differential Manifolds and Theoretical Physics Vol. I I7 Jean Berstel and Dominique Perrin, Theory of Codes Vol. 118 A. E. Hurd and P. A. Loeb, An Introduction to Nonstandard Real Analysis Vol. 119 Charalambos D. Aliprantis and Owen Burkinshaw, Positive Operators Vol. 120 William M. Boothby, An Introduction to Diferentiable Manfolds and Riemannian Geometry, Second Edition Vol. 121 Douglas C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres Vol. 122 Sergio Albeverio, Jens Erik Fenstad, Raphael Hoegh-Krohn, and Tom Lindstrom, Nonstandard Methods in Stochastic Analysis and Mathematical Physics Vol. 123 Alberto Torchinsky, Real- Variable Methods in Harmonic Analysis Vol. 124 Robert J. Daverman, Decomposition of Manifolds Vol. 125 J. M. G. Fell and R. S. Doran, Representations of *-Algebras, Locally Compact Groups, and Bunach *-Algebraic Bundles: Volume 1, Basic Representution Theory of Groups and Algebras Vol. 126 J. M. G. Fell and R . S. Doran, Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles: Volume 2, Induced Representations, the Imprimitivity Theorem, and the Generalized Mackey Anulysis Vol. 127 Louis H. Rowen, Rincj Theory, Volume I Vol. 128 Louis H. Rowen, Rincj Theory, Volume I1 Vol. 129 Colin Bennett and Robert Sharpley, Interpolation of Operators Vol. 130 Jurgen Poschel and Eugene Trubowitz, Inverse Spectral Theory Vol. 131 Jens Carsten Jantzen, Representations of Algebruic Groups Vol. 132 Nolan R. Wallach, R e d Reductive Groups I Vol. 116