Quantum teleportation of arbitrary two-qubit state via entangled cavity fields

Quantum teleportation of arbitrary two-qubit state via entangled cavity fields

G Model IJLEO-54691; No. of Pages 5 ARTICLE IN PRESS Optik xxx (2014) xxx–xxx Contents lists available at ScienceDirect Optik journal homepage: www...

322KB Sizes 2 Downloads 43 Views

G Model IJLEO-54691; No. of Pages 5

ARTICLE IN PRESS Optik xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Optik journal homepage: www.elsevier.de/ijleo

Quantum teleportation of arbitrary two-qubit state via entangled cavity fields Zhongjie Wang ∗ , Xu Fang College of Physics and Electronic Information, Anhui Normal University, Wuhu 241000, China

a r t i c l e

i n f o

Article history: Received 14 October 2013 Accepted 5 May 2014 Available online xxx PACS: 03.67.Hk 03.67.Mn

a b s t r a c t We propose a new protocol for quantum teleportation of an arbitrary two qubit state via continuous variables entangling channel. In our scheme two pairs of entangled light fields are employed. An outstanding characteristic of this scheme is that arbitrary state of two atoms is transmitted deterministically and directly to another pair of atoms without the help of the other atoms. © 2014 Elsevier GmbH. All rights reserved.

Keywords: Teleportation Entanglement state Entanglement cavity field

1. Introduction Recent years quantum teleportation has been extensively investigated both theoretically and experimentally due to its important application in quantum computation [1] and quantum communication [2–10]. Quantum teleportation, originally proposed by Bennett et al. in 1993, is such a technique as information is transferred from a sender to a receiver through a quantum entanglement channel with the help of some classical information. Since then, many various proposals were proposed through various quantum entanglement channels such as entangled Bell state [2], three-particle entangled state [7], entangled photon pairs, etc. quantum teleportation has been demonstrated experimentally in optical system [6], nuclear magnetic resonance [11], and trapped ions [12]. The author of Ref. [13] proposed a teleportation scheme for an arbitrary two qubit state which is based on the 16 orthogonal generalized Bell states. The author of Ref. [14] used a genuine irreducible four-qubit entangled state to transport arbitrary two-qubit state. In these proposed protocols, it is required that the multi-qubit entangled state is taken as quantum channel and the Bell state measurement technique for atomic states is used. In this paper, we present a new quantum teleportation scheme for an arbitrary two-qubit state. In our scheme, the entanglement

cavity fields instead of the entangled atomic states are taken as quantum channel and cavity quantum electric dynamics (QED) technique is used. This protocol needs not the Bell state measurement technique for atomic states and has 100% success probability.

2. Theoretical description Let us consider a three-level atom inside a single-mode light cavity driven by a classical field with frequency ω. The atomic states are denoted by |g> , |e >, and |i>. We assume that the transition frequency between the states |e> and |i> is highly detuned from the cavity field frequency. The Hamiltonian of this system is [9] ( = 1) H=

ω0 z + ωc a+ a + g(+ a + − a+ ) + ˝(+ e−iωt + − eiωt ) 2

where  + = |e > < g|,  − = |g > < e|,  z = |e > < e| − |g > < g|, |e> and |g> are the excited and ground states of the atom, a+ and a are the creation and annihilation operators for the cavity mode, ω0 is the transition frequency of the atom, g is the atom-cavity coupling strength, and ˝ is the Rabi frequency of the classical field. We assume that ω0 = ω. Then the interaction Hamiltonian, in the interaction picture, is HI = e−iıt g ∗  + a + eiıt g − a+ + ˝( + +  − )

∗ Corresponding author. E-mail address: [email protected] (Z. Wang).

(1)

(2)

where ı = ωc − ω0 is the detuning between the atomic transition frequency and cavity field frequency, here we set ı = 0. By making

http://dx.doi.org/10.1016/j.ijleo.2014.05.038 0030-4026/© 2014 Elsevier GmbH. All rights reserved.

Please cite this article in press as: Z. Wang, X. Fang, Quantum teleportation of arbitrary two-qubit state via entangled cavity fields, Optik - Int. J. Light Electron Opt. (2014), http://dx.doi.org/10.1016/j.ijleo.2014.05.038

G Model

ARTICLE IN PRESS

IJLEO-54691; No. of Pages 5

Z. Wang, X. Fang / Optik xxx (2014) xxx–xxx

2 y

a unitary transformation HI = THI T + = ei /4 HI e−i obtain the transformed interaction Hamiltonian HI

y /4

, we can

1 1 = ga+ ( z − i y ) + g ∗ a( z + i y ) + ˝ z 2 2

− (a|eg>12 + b|ee>12 + c|gg>12 + d|ge>12 )|gg>34 R3A R1B + (a|eg>12 + b|ee>12 + c|gg>12 + d|ge>12 )|eg>34 R4A R1B

(3)

− (a|gg>12 + b|ge>12 + c|eg>12 + d|ee>12 )|ge>34 R1A R2B

Making the rotating wave approximation, which is equivalent to the transformation e−i2˝tz HI e−i2˝tz , the transformed interaction Hamiltonian HI becomes

+ (a|gg>12 + b|ge>12 + c|eg>12 + d|ee>12 )|ee>34 R2A R2B

1 1 (ga+ + g ∗ a) z − (g ∗ a − ga+ )( + ei2˝t −  − e−i2˝t ) + ˝ z 2 2 (4)

− (a|eg>12 + b|ee>12 + c|gg>12 + d|ge>12 )|ee>34 R4A R2B

Assuming that 2˝ » g, we can neglect the fast oscillating terms. Then HI reduces to

+ (a|ge>12 + b|gg>12 + c|ee>12 + d|eg>12 )|eg>34 R2A R3B

HI =

HI

1 = (ga+ + g ∗ a) z + ˝ z 2

(5)

Proceeding to making the anti-transformation, HI = T + HI T , we can obtain HI =

1 (ga+ + g ∗ a) x + ˝ x 2

(6)

x

+ +g ∗ a) x /2

− (a|ge>12 + b|gg>12 + c|ee>12 + d|eg>12 )|gg>34 R1A R3B

+ (a|ee>12 + b|eg>12 + c|ge>12 + d|gg>12 )|gg>34 R3A R3B −(a|ee>12 + b|eg>12 + c|ge>12 + d|gg>12 )|eg>34 R4A R3B + (a|ge>12 + b|gg>12 + c|ee>12 + d|eg>12 )|ge>34 R1A R4B − (a|ge>12 + b|gg>12 + c|ee>12 + d|eg>12 )|ee>34 R2A R4B − (a|ee>12 + b|eg>12 + c|ge>12 + d|gg>12 )|ge>34 R3A R4B

The evolution operator for HI is represented as U = e−itHI = e−i˝t e−i(ga

+ (a|eg>12 + b|ee>12 + c|gg>12 + d|ge>12 )|ge>34 R3A R2B

(7)

+ (a|ee>12 + b|eg>12 + c|ge>12 + d|gg>12 )|ee>34 R4A R4B

(12)

where

In next section, we will apply Eq. (7) in quantum teleportation of an arbitrary two-qubit state.



R1 = 2|0, 0> + |i2˛, i2˛> + |i2˛, 0> + |0, i2˛> + |0, −i2˛> + | − i2˛, 0> + | − i2˛, −i2˛>

3. Teleportation of arbitrary two-bit state

(13)



We consider the teleportation of an unknown arbitrary twoqubit state | > 12 using continuous variables entangled state as quantum channel. Suppose the state of atoms 1 and 2 which is teleported by Alice to Bob is an unknown arbitrary two-qubit state | >12 = a|gg>12 + b|ge>12 + c|eg>12 + d|ee>12

(8)

where a, b are unknown coefficients, |a|2 + |b|2 + |c|2 + |d|2 = 1. Atoms 3 and 4 belonging to Bob are prepared in the ground state. Two pairs of entangled cavity fields (cavity 1, 2 belongs to Alice and cavity 3, 4 belongs to Bob) are used as quantum channel |ϕ >=

(|i˛>1 |i˛>3 + | − i˛>1 | − i˛>3 )(|i˛>2 |i˛>4 + | − i˛>2 | − i˛>4 ) N

(9)

where N is normalized constant. The initial state of the whole system composed of atoms 1, 2, 3, 4 and light cavities are given by | (0) >= (a|gg>12 + b|ge>12 + c|eg>12 + d|ee>12 ) ⊗ |ϕ > ⊗|gg>34

(10)

Step 1: Alice and Bob send atoms 1, 2 and 3, 4 into each singlemode cavity 1, 2 and 3, 4, respectively. The evolution operator Uk of the kth atoms and the kth cavity field is described by Eq. (7). We have assumed that coupling parameters ˝, g between atoms and light fields are same. By selecting the interacting time t and the parameters , ˝ to satisfy the condition ˝t = m, m being a large positive even integer, we can obtain the evolution operator Uk as (11)

i˛(ai +a+ ) i

is displacement operator of light field in where Dk (i˛) = e the kth cavity, ˛ = gt/2 (here it is assumed that g is real). According to Eq. (11), we can obtain the state of the whole system as |

>= U1 U2 U3 U4 | (0) > =

1 16



(a|gg>12 + b|ge>12 + c|eg>12 + d|ee>12 ) |gg>34 R1A R1B

− (a|gg>12 + b|ge>12 + c|eg>12 + d|ee>12 )|eg>34 R2A R1B

0> − | − i2˛, −i2˛>  R3

(14)

= |i2˛, i2˛> + |i2˛, 0> − |0, i2˛> + |0, −i2˛> −| − i2˛,

0> − | − i2˛, −i2˛>  R4

(15)

= 2|0, 0> + |i2˛, i2˛> − |i2˛, 0> − |0, i2˛> − |0,

− i2˛> − | − i2˛, 0> + | − i2˛, −i2˛>

(16)

In the above formulae, we have used symbols  = A, B, A = (1, 3), B = (2, 4) and abbreviation |˛, ˇ > A = |˛ > 1 |ˇ > 3 , |˛, ˇ > B = |˛ > 2 |ˇ > 4 . We define the even and odd coherence states for the kth cavity field as |± >k =

The entire teleportation protocol is described as follows:

1 Uk = {[Dk (i˛) + Dk+ (i˛)] − [Dk (i˛) − Dk+ (i˛)]kx } 2

R2 = |i2˛, i2˛> − |i2˛, 0> + |0, i2˛> − |0, −i2˛> + |−i2˛,

(|i2˛>k ± | − i2˛>k )



N1

(k = 1, 2)

(17)

where N1 is normalized constant. By using the even and odd coherence states, Eqs. (13)–(16) can be represented as 

R1 = 2|0, 0> + +



N1 (|+ , 0> + |0, + > )



R2 = + 

N1 (|0, + > − |+ , 0> )

(19)

N1 (|+ , − > + |− , + > ) 2



N1 (|+ , 0> − |0, + > )



R4 = 2|0, 0> + −

(18)

N1 (|+ , − > + |− , + > ) 2



R3 = +

N1 (|+ , + > + |− , − > ) 2



(20)

N1 (|+ , + > + |− , − > ) 2

N1 (|+ , 0> + |0, + > )

(21)

Please cite this article in press as: Z. Wang, X. Fang, Quantum teleportation of arbitrary two-qubit state via entangled cavity fields, Optik - Int. J. Light Electron Opt. (2014), http://dx.doi.org/10.1016/j.ijleo.2014.05.038

G Model IJLEO-54691; No. of Pages 5

ARTICLE IN PRESS Z. Wang, X. Fang / Optik xxx (2014) xxx–xxx

3

Table 1 In teleportation process a variety of measurement results and the transformations made by Bob (measurement results for light fields is in set of (R1A R1B , R1A R4B , R4A R1B , R4A R4B )). Measurement results on light fields made by Alice and Bob

Measurement results on atoms 1, 2 made by Alice

States of atoms 3 and 4

Transformation operated by Bob

|00 > A |00 > B |00 > A |+ + > B |00 > A |− − > B |+ + > A |00 > B |− − > A |00 > B |+ + > A |+ + > B |+ + > A |− − > B |− − > A |+ + > B |− − > A |− − > B

|gg > 12

a|gg > 34 + b|ge > 34 + c|eg > 34 + d|ee > 34

I

|ge > 12

b|gg > 34 + a|ge > 34 + d|eg > 34 + c|ee > 34

4x

|eg > 12

c|gg > 34 + d|ge > 34 + a|eg > 34 + b|ee > 34

3x

|ee > 12

d|gg > 34 + c|ge > 34 + b|eg > 34 + a|ee > 34

3x 4x

|00 > A |+ 0 > B |00 > A |0+ > B |+ + > A |+ 0 > B |+ + > A |0+ > B |− − > A |+ 0 > B |− − > A |0+ > B

|gg > 12 |ge > 12 |eg > 12 |ee > 12

a|gg > 34 − b|ge > 34 + c|eg > 34 − d|ee > 34 b|gg > 34 − a|ge > 34 + d|eg > 34 − c|ee > 34 c|gg > 34 − d|ge > 34 + a|eg > 34 − b|ee > 34 d|gg > 34 − c|ge > 34 + b|eg > 34 − a|ee > 34

4z 4z 4x 4z 3x 4z 3x 4x

|+ 0 > A |00 > B |0+ > A |00 > B |+ 0 > A |+ + > B |0+ > A |+ + > B |+ 0 > A |− − > B |0+ > A |− − > B

|gg > 12 |ge > 12 |eg > 12 |ee > 12

a|gg > 34 + b|ge > 34 − c|eg > 34 − d|ee > 34 b|gg > 34 + a|ge > 34 − d|eg > 34 − c|ee > 34 c|gg > 34 + d|ge > 34 − a|eg > 34 − b|ee > 34 d|gg > 34 + c|ge > 34 − b|eg > 34 − a|ee > 34

3z 4x 3z 3x 3z 3x 3z 4x

|+ 0 > A |+ 0 > B |+ 0 > A |0+ > B |0+ > A |+ 0 > B |0+ > A |0+ > B

|gg > 12 |ge > 12 |eg > 12 |ee > 12

a|gg > 34 − b|ge > 34 − c|eg > 34 + d|ee > 34 b|gg > 34 − a|ge > 34 − d|eg > 34 + c|ee > 34 c|gg > 34 − d|ge > 34 − a|eg > 34 + b|ee > 34 d|gg > 34 − c|ge > 34 − b|eg > 34 + a|ee > 34

3x 4z 3z 4x 4z 3x 3z 4z 3x 3z 4x 4z

Step 2: Alice and Bob perform a Bell-like measurement operation on the state of their cavity fields and inform the results each other. The Bell-like measurement for field states has been studied in Ref. [15]. After measurement, two pairs of atoms are located in the entangled states. Step 3: After Alice receiving the information about the operation accomplishment, Alice then performs a Von Neumann measurement operation on the state of atoms 1, 2, and informs the results to Bob. Step 4: According to Alice’s measurement results, Bob then decides whether to perform a unitary operation on the state of atom 3, 4 or not so that he obtains the wanted state.

For example, in step 2, supposing that Alice and Bob obtain the measurement result |0, 0 > A |0, 0 > B , the state of the whole system collapses into

|



>=

1 {(a|gg>12 + b|ge>12 + c|eg>12 + d|ee>12 )|gg>34 4

+ (a|eg>12 + b|ee>12 + c|gg>12 + d|ge>12 )|eg>34 + (a|ge>12 + b|gg>12 + c|ee>12 + d|eg>12 )|ge>34 + (a|ee>12 + b|eg>12 + c|ge>12 + d|gg>12 )|ee>34 }

(22)

Table 2 In teleportation process a variety of measurement results and the transformations made by Bob (measurement results for light fields is in set of (R1A R2B , R4A R2B , R1A R3B , R4A R3B )). Measurement results on light fields made by Alice andMeasurement Bob results on atoms 1, 2 made by Alice States of atoms 3 and 4

Transformation operated by Bob

|00 > A |+ − > B |00 > A |− + > B |+ + > A |+ − > B |+ + > A |− + > B |− − > A |+ − > B |− − > A |− + > B |+ 0 > A |+ − > B |+ 0 > A |− + > B |0+ > A |+ − > B |0+ > A |− + > B

|gg > 12

4x b|gg > 34 + a|ge > 34 + d|eg > 34 + c|ee > 34

|ge > 12

I a|gg > 34 + b|ge > 34 + c|eg > 34 + d|ee > 34

|eg > 12

3x 4x d|gg > 34 + c|ge > 34 + b|eg > 34 + a|ee > 34

|ee > 12

3x c|gg > 34 + d|ge > 34 + a|eg > 34 + b|ee > 34

|00 > A |− 0 > B |+ + > A |− 0 > B |− − > A |− 0 > B |00 > A |0− > B |+ + > A |0− > B |− − > A |0− > B

|gg > 12 |ge > 12 |eg > 12 |ee > 12

x z b|gg > 34 + a|ge > 34 − d|eg > 34 − c|ee >34  4 3 z agg > 34 + b||ge > 34 − c|eg > 34 − d|ee >34 3 x x z d|gg > 34 + c|ge > 34 − b|eg > 34 − a|ee >34   4 3 3 x z  c|gg > 34 + d|ge > 34 − a|eg > 34 − b|ee >34 3 3

|+ 0 > A |− 0 > B |0+ > A |− 0 > B

|gg > 12 |ge > 12 |eg > 12 |ee > 12

z x z b|gg > 34 − a|ge > 34 − d|eg > 34 + c|ee >34   3 4 4 z z a|gg > 34 − b|ge > 34 − c|eg > 34 + d|ee >34  3 4 d|gg > 34 − c|ge > 34 −b|eg > 34 + a|ee > 34 3z 3x 4x 4z c|gg > 34 − d|ge > 34 −a|eg > 34 + b|ee > 34 3x 3z 4z

|+ 0 > A |0− > B |0+ > A |0− > B

|gg > 12 |ge > 12 |eg > 12 |ee > 12

b|gg > 34 + a|ge > 34 +d|eg > 34 + c|ee > 344x a|gg > 34 + b|ge > 34 +c|eg > 34 + d|ee > 34I d|gg > 34 + c|ge > 34 +b|eg > 34 + a|ee > 343x 4x c|gg > 34 + d|ge > 34 +a|eg > 34 + b|ee > 343x

Please cite this article in press as: Z. Wang, X. Fang, Quantum teleportation of arbitrary two-qubit state via entangled cavity fields, Optik - Int. J. Light Electron Opt. (2014), http://dx.doi.org/10.1016/j.ijleo.2014.05.038

G Model IJLEO-54691; No. of Pages 5

ARTICLE IN PRESS Z. Wang, X. Fang / Optik xxx (2014) xxx–xxx

4

Table 3 In teleportation process a variety of measurement results and the transformations made by Bob (measurement results for light fields is in set of (R2A R2B , R3A R3B , R2A R3B , R3A R2B )). Measurement results on light fields made by Alice and Bob

Measurement results on atom 1, 2 made by Alice

States of atom 3 and 4

Transformation operated by Bob

|+ − > A |+ − > B |+ − > A |− + > B |− + > A |+ − > B |− + > A |− + > B |+ 0 > A |0− > B |− + > A |0− > B |− 0 > A |0− > B |0− > A |− 0 > B |+ − > A |− 0 > B

|gg > 12

d|gg > 34 + c|ge > 34 + b|eg > 34 + a|ee > 34

3x 4x

|ge > 12

c|gg > 34 + d|ge > 34 + a|eg > 34 + b|ee > 34

3x

|eg > 12

b|gg > 34 + a|ge > 34 + d|eg > 34 + c|ee > 34

4x

|ee > 12

a|gg > 34 + b|ge > 34 + c|eg > 34 + d|ee > 34

I

|− 0 > A |− 0 > B |− + > A |− 0 > B |− 0 > A |− 0 > B |0− > A |0− > B

|gg > 12 |ge > 12 |eg > 12 |ee > 12

d|gg > 34 − c|ge > 34 + b|eg > 34 − a|ee > 34 c|gg > 34 − d|ge > 34 + a|eg > 34 − b|ee > 34 b|gg > 34 − a|ge > 34 + d|eg > 34 − c|ee > 34 a|gg > 34 − b|ge > 34 + c|eg > 34 − d|ee > 34

3x 4x 4z 3x 4z 4x 4z 4z

|+ 0 > A |+ − > B |− 0 > A |− + > B |0− > A |+ − > B |0− > A |− + > B

|gg > 12 |ge > 12 |eg > 12 |ee > 12

d|gg > 34 + c|ge > 34 − b|eg > 34 − a|ee > 34 c|gg > 34 + d|ge > 34 − a|eg > 34 − b|ee > 34 b|gg > 34 + a|ge > 34 − d|eg > 34 − c|ee > 34 a|gg > 34 + b|ge > 34 − c|eg > 34 − d|ee > 34

3x 4x 3z 3x 3z 3z 4x 3z

Table 4 In teleportation process a variety of measurement results and the transformations made by Bob (measurement results for light fields is in set of (R2A R1B , R3A R1B , R2A R4B , R3A R4B )). Measurement results on light fields made by Alice and Bob

Measurement results on atoms 1, 2 made by Alice

States of atoms 3 and 4

Transformation operated by Bob

|+ − > A |00 > B |− + > A |00 > B |+ − > A |+ + > B |− + > A |+ + > B |+ − > A |− − > B |− + > A |− − > B

|gg > 12

c|gg > 34 + d|ge > 34 + a|eg > 34 + b|ee > 34

3x

|ge > 12

d|gg > 34 + c|ge > 34 + b|eg > 34 + a|ee > 34

3x 4x

|eg > 12 |ee > 12

a|gg > 34 + b|ge > 34 + c|eg > 34 + d|ee > 34 b|gg > 34 + a|ge > 34 + d|eg > 34 + c|ee > 34

I 4x

|+ − > A |+ 0 > B |− + > A |+ 0 > B |+ − > A |0+ > B |− + > A |0+ > B

|gg > 12 |ge > 12 |eg > 12 |ee > 12

c|gg > 34 − d|ge > 34 + a|eg > 34 − b|ee > 34 d|gg > 34 − c|ge > 34 + b|eg > 34 − a|ee > 34 a|gg > 34 − b|ge > 34 + c|eg > 34 − d|ee > 34 b|gg > 34 − a|ge > 34 + d|eg > 34 − c|ee > 34

3x 3z 3x 4z 4z 4x 4z

|− 0 > A |00 > B |− 0 > A |+ + > B |− 0 > A |− − > B |0− > A |00 > B |0− > A |+ + > B |0− > A |− − > B

|gg > 12 |ge > 12 |eg > 12 |ee > 12

c|gg > 34 + d|ge > 34 − a|eg > 34 − b|ee > 34 d|gg > 34 + c|ge > 34 − b|eg > 34 − a|ee > 34 a|gg > 34 + b|ge > 34 − c|eg > 34 − d|ee > 34 b|gg > 34 + a|ge > 34 − d|eg > 34 − c|ee > 34

3x 3z 3x 3z 4x 3z 3z 4x

|− 0 > A |+ 0 > B |− 0 > A |0+ > B |0− > A |+ 0 > B |0− > A |0+ > B

|gg > 12 |ge > 12 |eg > 12 |ee > 12

c|gg > 34 − d|ge > 34 − a|eg > 34 + b|ee > 34 d|gg > 34 − c|ge > 34 − b|eg > 34 + a|ee > 34 a|gg > 34 − b|ge > 34 − c|eg > 34 + d|ee > 34 b|gg > 34 − a|ge > 34 − d|eg > 34 + c|ee > 34

3x 3z 4z 3x 4x 3z 4z 3z 4z 3z 4x 4z

In step 3, supposing that the measurement result for atoms 1 and 2 is |gg > 12 , the state of atoms 3 and 4 then becomes into |



>= a|gg>34 + b|ge>34 + c|eg>34 + d|ee>34

(23)

This is exactly teleported state what we want. Thus the whole teleportation process ends. The other cases are represented in Tables 1–4. The measurement results on light fields made by Alice and Bob can be divided into four groups according to whether they appear in sets of (R1A R1B , R1A R4B , R4A R1B , R4A R4B ), (R2A R2B , R3A R3B , R2A R3B , R3A R2B ) and (R1A R2B , R4A R2B , R1A R3B , R4A R3B ), A B A B A B A B (R2 R1 , R3 R1 , R2 R4 , R3 R4 ) or not. Each group of measurement results are labeled in Tables 1–4, respectively. From Tables 1–4, we can see that the success probability for the teleportation scheme presented here is 100%.

as quantum entanglement channel in our teleportation protocol which is considered to be mesoscopic features; (ii) it operates without the help of Bell state measurements for atom pairs, but needs the Bell-like measurement for single cavity field; (iii) in our teleportation protocol, the state for a pair of atom is transmitted directly to another pair of atom without the help of the other atoms; (iv) the cavity field entanglement state to be used as quantum entanglement channel has been prepared theoretically [16]. This scheme can be realized in the experiment. In conclusion, we have proposed a novel deterministical teleportation protocol for arbitrary two-qubit state. In this protocol, two pairs of the entanglement cavity fields are used as quantum entanglement channel, and the state for a pair of atoms is transmitted directly to another pair of atoms without the help of Bell state measurements for atomic states.

4. Discussion and conclusion Finally, we compare this scheme with the other schemes. The scheme proposed in this paper, has some prominent features: (i) unlike the usual schemes proposed in Refs. [13,14], the entanglement cavity fields instead of the entanglement qubits is taken

Acknowledgements This work was supported by the Natural Science Foundation of Anhui Province of China (no. 090412060)

Please cite this article in press as: Z. Wang, X. Fang, Quantum teleportation of arbitrary two-qubit state via entangled cavity fields, Optik - Int. J. Light Electron Opt. (2014), http://dx.doi.org/10.1016/j.ijleo.2014.05.038

G Model IJLEO-54691; No. of Pages 5

ARTICLE IN PRESS Z. Wang, X. Fang / Optik xxx (2014) xxx–xxx

References [1] A. S␾rensen, K. M␾lmer, Entanglement and quantum computation with ions in thermal motion, Phys. Rev. A62 (2000) 022311. [2] D. Bouwmeester, et al., Experimental quantum teleportation, Nature (London) 390 (1997) 575. [3] C.H. Bennett, et al., Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70 (1993) 1895. [4] M. Riebe, H. Hffner, et al., Deterministic quantum teleportation with atoms, Nature (London) 429 (6993) (2004) 734–737. [5] H.W. Lee, Total teleportation of an entangled state, Phys. Rev. A64 (2001) 014302. [6] B.G. Taketani, F. de Melo, R.L. de Matos Filho, Optimal teleportation with a noisy source, Phys. Rev. A 85 (2012) 020301 (R). [7] J.X. Fang, Y.S. Lin, et al., Probabilistic teleportation of a three-particle state via three pairs of entangled particles, Phys. Rev. A 67 (2003) 014305. [8] X.W. Zha, H.Y. Song, Non-Bell-pair quantum channel for teleporting an arbitrary two-qubit state, Phys. Lett. A 369 (2007) 377.

5

[9] S.B. Zheng, Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement, Phys. Rev. A69 (2004) 064302. [10] S. Bose, et al., Proposal for teleportation of an atomic state via cavity decay, Phys. Rev. Lett. 83 (1999) 5158. [11] M.A. Nielsen, E. Knill, R. Laflamme, Complete quantum teleportation using nuclear magnetic resonance, Nature (London) 396 (1998) 52. [12] M. Riebe, et al., Deterministic quantum teleportation with atoms, Nature (London) 429 (2004) 734. [13] G. Rigolin, Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement, Phys. Rev. A71 (2005) 032303. [14] Ye Yeo, Wee Kang Chua, Teleportation and dense coding with genuine multipartite entanglement, Phys. Rev. Lett. 96 (2006) 060502. [15] M.C. de Oliveira, G.J. Miburn, Discrete teleportation protocol of continuum spectra field states, Phys. Rev. A65 (2002) 032304. [16] G.C. Gerry, Proposal for a mesoscopic cavity QED realization of the Greenberger–Horne–Zeilinger state, Phys. Rev. A54 (1996) R2529.

Please cite this article in press as: Z. Wang, X. Fang, Quantum teleportation of arbitrary two-qubit state via entangled cavity fields, Optik - Int. J. Light Electron Opt. (2014), http://dx.doi.org/10.1016/j.ijleo.2014.05.038