Waterborne toxoplasmosis – Recent developments

Waterborne toxoplasmosis – Recent developments

Experimental Parasitology 124 (2010) 10–25 Contents lists available at ScienceDirect Experimental Parasitology journal homepage: www.elsevier.com/lo...

328KB Sizes 0 Downloads 0 Views

Experimental Parasitology 124 (2010) 10–25

Contents lists available at ScienceDirect

Experimental Parasitology journal homepage: www.elsevier.com/locate/yexpr

Minireview

Waterborne toxoplasmosis – Recent developments J.L. Jones a,*, J.P. Dubey b a

Division of Parasitic Diseases, National Center for Zoonotic, Vectorborne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, 4770 Buford Highway, MS: F22, Chamblee, GA 30341, USA Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, BARC-East, Building 1001, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA b

a r t i c l e

i n f o

Article history: Received 31 October 2008 Received in revised form 10 March 2009 Accepted 17 March 2009 Available online 24 March 2009 Keywords: Toxoplasma gondii Toxoplasmosis Oocyst Pathogenesis Biology Diagnosis Epidemiology Toxoplasma Waterborne Parasite Protozoa

a b s t r a c t Humans become infected with Toxoplasma gondii mainly by ingesting uncooked meat containing viable tissue cysts or by ingesting food or water contaminated with oocysts from the feces of infected cats. Circumstantial evidence suggests that oocyst-induced infections in humans are clinically more severe than tissue cyst-acquired infections. Until recently, waterborne transmission of T. gondii was considered uncommon, but a large human outbreak linked to contamination of a municipal water reservoir in Canada by wild felids and the widespread infection of marine mammals in the USA provided reasons to question this view. The present paper examines the possible importance of T. gondii transmission by water. Published by Elsevier Inc.

Disclaimer: The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the Department of Health and Human Services, the Centers for Disease Control and Prevention or the US Department of Agriculture. 1. Introduction Infection with the protozoan Toxoplasma gondii is one of the most common parasitic infections of man and other warm-blooded animals (Dubey and Beattie, 1988; Tenter et al., 2000; Hill et al., 2002). In most adults it does not cause serious illness, however, blindness and mental retardation can occur in congenitally infected children, severe disease occurs in those with depressed immunity, and ocular disease can occur from acute infection after birth. Toxoplasmosis, until recently, was not often considered a waterborne zoonosis. However, a major outbreak of toxoplasmosis in humans in Canada in 1994 (Bowie et al., 1997) was associated with T. gondii in municipal waters. Recently, T. gondii has been reported in many marine mammals, suggesting the possibility that the contamination of seawater with T. gondii may be more com-

* Corresponding author. Fax: +1 770 488 7761. E-mail address: [email protected] (J.L. Jones). 0014-4894/$ - see front matter Published by Elsevier Inc. doi:10.1016/j.exppara.2009.03.013

mon than realized (Conrad et al., 2005; Dubey and Jones, 2008). This review focuses on the waterborne aspects of T. gondii. 2. Life cycle Toxoplasma gondii is a coccidian parasite where felids are the definitive hosts and warm-blooded animals are intermediate hosts (Frenkel et al., 1970). It is among the most common of parasites of animals and T. gondii is the only known species. Coccidia in general have complex life cycles. Although most are host-specific, and only transmitted by a fecal-oral cycle, T. gondii can also be transmitted transplacentally and by carnivorism. There are three stages of T. gondii that are infectious for all hosts: tachyzoites, bradyzoites, and oocysts. The tachyzoite is often crescent-shaped and 2  6 lm in size. It enters the host cell by active penetration of the cell membrane and becomes surrounded by a parasitophorous vacuole that protects it from host defense mechanisms. The tachyzoite multiplies asexually by repeated endodygeny until the host cell ruptures. After an unknown numbers of divisions, T. gondii tachyzoites give rise to another stage called a tissue cyst. Tissue cysts grow and remain intracellular. They vary in size from 5 to 70 lm and contain a few to several hundred bradyzoites (Dubey et al.,

11

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25 Table 1 Wild felids as definitive host for T. gondii.a Definitive host

Oocyst shedding Expt.

Natural

African wild cat (Felis lybica) Amur leopard cat (Felis euptilurus) Asian leopard (Felis bengalensis)

Yesb No Yes Yesb No Yesb No Yesb No Yesb No No No No Yesb No Yesb No Yesb No No No Yesb No No No

No Yesb No No Yesb No Yesb No Yesb No Yesb Yesc Yesb Yesb No Yesd No Yesb No Yes Yesb Yesd No Yesc Yesb Yesb

Bobcat (Lynx rufus) Cheetah (Acinonyx jubatus) Cougar (Felis concolor) Cougar (Felis concolor vancouverensis) Geoffroy’s cat (Oncifelis geoffroyi) Iriomote cat (Felis iriomotensis) Jaguarundi (Felis yagouaroundi) Lion (Panthera leo) Mountain lion (Felis concolar) Ocelot (Felis pardalis) Pallas cat (Felis manul)

Pampas cat (Oncifelis colocolo) Siberian tiger (Panthera tigris altaica) Wild cat (Felis silvestris) a b c d

Reference

Polomoshnov (1979) Lukešová and Literák (1998) Janitschke and Werner (1972) Miller et al. (1972) Marchiondo et al. (1976) Miller et al. (1972) Marchiondo et al. (1976) Polomoshnov (1979) Marchiondo et al. (1976) Miller et al. (1972) Aramini et al. (1998) Pizzi et al. (1978) Lukešová and Literák (1998) Akuzawa et al. (1987) Jewell et al. (1972) Ocholi et al. (1989) Polomoshnov (1979) Marchiondo et al. (1976) Jewell et al. (1972) Patton et al. (1986) Basso et al. (2005) (Dubey et al. 1988) Polomoshnov (1979) Pizzi et al. (1978) Dorny and Fransen (1989) Lukešová and Literák (1998)

From Dubey (2009a). Confirmed by bioassay in mice. Confirmed by bioassay in pigs. Immunohistochemical post mortem examination.

1998). Although tissue cysts may develop in visceral organs, including lungs, liver, and kidneys, they are more prevalent in muscular and neural tissues, including the brain, eye, skeletal, and cardiac muscle. The tissue cyst wall is elastic, thin (<0.5 lm), and may enclose hundreds of crescent-shaped slender bradyzoites each measuring 7  1.5 lm. Intact tissue cysts are probably harmless and can persist for the life of the host (Dubey et al., 1998). Upon ingestion by cats, the wall of the tissue cyst is digested by the proteolytic enzymes in the stomach and small intestine, and bradyzoites are released. Some penetrate the lamina propria of the intestine and multiply as tachyzoites. Within a few hours, T. gondii may disseminate to extra-intestinal tissues. The bradyzoites that remain in the epithelial cells of the small intestine initiate the development of numerous generations of T. gondii (Dubey and Frenkel, 1972). Five morphologically distinct asexual types of T. gondii develop in intestinal epithelial cells before the sexual cycle begins. These stages are designated types A–E instead of generations because there are several generations within each T. gondii type. These asexual stages in the feline intestine are structurally distinct from tachyzoites that also develop in the lamina propria. The entroepithelial stages (types A–E, gamonts) are formed in the intestinal epithelium. Occasionally, type B and C schizonts develop within enterocytes that are displaced beneath the epithelium into the lamina propria. Types C, D, and E schizonts multiply by schizogony. In schizogony, the nucleus divides two or more times without cytoplasmic division. The sexual cycle starts 2 days after ingestion of tissue cysts by the cat. The origin of gamonts has not been determined, but the merozoites released from schizont types D and E probably initiate gamete formation. Gamonts occur throughout the small intestine but most commonly in the ileum, 3–15 days after inoculation. The male gamete has two flagellae and swims to and enters the female gamete. After the female gamete is fertilized by the male gamete, oocyst wall formation begins around the fertilized gamete. When oocysts are mature, they are

discharged into the intestinal lumen by the rupture of intestinal epithelial cells. Toxoplasma gondii persists in intestinal and extraintestinal tissue of cats for at least several months, and possibly for the life of the cat. Oocysts of T. gondii are formed only in cats, including both domestic and wild felids (Table 1). Cats shed oocysts after ingesting tachyzoites, bradzyoites, or oocysts. However, less than 50% of cats shed oocysts after ingesting tachyzoites or oocysts whereas nearly all shed oocysts after ingesting tissue cysts. Oocysts in freshly passed feces are unsporulated (non-infective), subspherical to spherical in shape, and 10  12 lm in diameter. Sporulation occurs outside the cat and within 1–5 days, depending upon aeration and temperature. Sporulated oocysts contain two ellipsoidal sporocysts. Each sporocyst contains four sporozoites. The sporozoites are 2  6–8 lm in size (Dubey et al., 1998). Hosts, including felids can acquire T. gondii by ingesting either tissues of infected animals, food and drink contaminated with sporulated oocysts, or by transplacental transmission. After ingestion, bradyzoites released from tissue cysts or sporozoites from oocysts penetrate intestinal tissues, transform to tachyzoites, multiply locally, and are disseminated in the body via blood or lymph. After a few multiplication cycles, tachyzoites give rise to bradyzoites in a variety of tissues. Toxoplasma gondii infection during pregnancy can lead to infection of the fetus. Congenital toxoplasmosis in humans, sheep, and goats can kill the fetus. 3. Estimating oocyst contamination in the environment 3.1. Oocyst shedding during primary and secondary infections Under laboratory conditions domestic cats shed millions of oocysts after feeding on one T. gondii-infected mouse (Dubey and Frenkel, 1972). In one study, cats fed as few as one bradyzoite shed

12

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25

Table 2 Shedding of T. gondii oocysts by cats during primary infection and after challenge with I. felis.a Cat No.

No. of oocysts shed Primary infection

After challenge with I. felis

3 4 5 6 7 8 9 10 11 12

108.19 107.38 107.27 107.50 107.86 108.13 107.14 108.13 107.43 107.15

107.22 106.57 107.17 106.24 106.69 106.34 104 None 106.17 105.21

a

in Table 2. Isospora felis is a common coccidium of cats. It does not harm the cat but can initiate T. gondii oocyst shedding from a cat chronically infected with T. gondii. How often this happens in nature is not known but we wish to illustrate that many oocysts can be shed by cats. 3.2. Prevalence of oocysts in feces of naturally infected domestic cats

Modified from Dubey (1976).

millions of oocysts, indicating the high reproductive potential of this parasite (Dubey, 2001). Oocysts were shed for less than 3 weeks, mostly for 1 week. Under laboratory conditions, cats acquire good immunity to reshedding of oocysts, but in one study 4 of 9 cats reshed oocysts when they were fed tissue cysts 6 years after primary infection (Dubey, 1995). Concomitant infections, malnutrition, and immunosuppression might also affect reshedding of oocysts (Dubey, 1995, 2009). An example of this is given

How often cats shed oocysts in nature is unknown. Coprological surveys are unrewarding because at any given time less than 1% of cats were found shedding oocysts. Published reports for the last 20 years are summarized in Table 3. Detection of oocysts in feces has several technical problems, including the sensitivity of the methods used to detect and identify T. gondii oocysts in feces. Oocysts of Hammondia hammondi (and possibly other coccidians) shed in cat feces are morphologically similar to T. gondii. Additionally, microscopic examination is likely to miss a low density (less than 1000 oocysts per gram) of oocysts. Detection of DNA from T. gondii oocysts may present additional problems because of inhibitors in fecal matter and difficulty of releasing DNA from the oocysts (Schares et al., 2008a; Salant et al., 2007; Dabritz et al., 2007b). Salant et al. (2007) were able to detect DNA from five T. gondii oocysts in feces experimentally contaminated with oocysts. However, Dabritz et al. (2007b) did not find DNA in feces of three naturally infected cats that contained T. gondii-like oocysts (Table 3). From a

Table 3 Prevalence of T. gondii-like oocysts in feces of cats (principally 1988–2008). Country

Argentina Austria Belgium Brazil Colombia Czec Republic France Germany

India Iran Israel Japan Mexico Mexico New Zealand Nigeria Panama People’s Republic of China Singapore Spain Taiwan Turkey USA

a b c d e

No. of cats

50 1368 30 237 18 143 390 322 264 70a 24,106 2473 2472 441 9 50 100 122 335 200 200 63 52 383 26 722 382 592 96 72 274b 206 450 326 263 34

Grams of feces tested

NS NS NS 1 NS 2–10 NS NS NS NS NS NS NS NS NS NS 1 3 NS NS NS NS NS NS 10 1–2 3 NS NS NS NS NS NS NS NS NS

Litters of kittens from farms. Cats from pig farms. Confirmed by bioassay in mice. Oocysts not found by microscopic examination. Negative by PCR.

Methods Micro

Bioassay

PCR

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes NS Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes

Yes No No Yes No Yes Yes No No No No No No No Yes No No No Yes Yes No No No Yes Yes No No No No No Yes No No No No Yes

No No No Yes No No No No No No Yes No No No No No No Yes No No No No No No No No No No No No No No No Noe No No

No. pos. (%)

Reference

1 (2.0)c 27 (2) 0 3 (1.2) 12 (66.6) 0 0 0 0 (17.1) 26 (0.11) 22 (0.9) 26 (1.0) 3 (0.7) 1 (11) 0 0 11 (9)d 1 (0.3) 14 (7.0) 0 0 0 2 (0.5) 0 0 0 0 0 0 5 (1.8) 0 3 (0.7) 3 (0.9) 3 (1.1) 0

Venturini et al. (1992,1997a) Edelhofer and Aspöck (1996) Vanparijs et al. (1991) Pena et al. (2006) Londoño et al. (1998) Dubey et al. (2006) Svobodová et al. (1998) Afonso et al. (2006) Knaus and Fehler (1989) Beelitz et al. (1992) Schares et al. (2008a) Barutzki and Schaper (2003) Epe et al. (1993) Epe et al. (2004) Shastri and Ratnaparkhi (1992) Hooshyar et al. (2007) Sharif et al. (2009) Salant et al. (2007) Oikawa et al. (1990) de Aluja and Aguilar (1977) Guevara Collazo et al. (1990) Langham and Charleston (1990) Umeche (1990) Frenkel et al. (1995) Dubey et al. (2007a) Chong et al. (1993) Miró et al. (2004) Montoya et al. (2008) Lin et al. (1990) Karatepe et al. (2008) Dubey et al. (1995) Hill et al. (2000) Rembiesa and Richardson (2003) Dabritz et al. (2007b) Victor Spain et al. (2001) de Camps et al. (2008)

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25 Table 4 Toxoplasma gondii oocysts per gram (opg) of feces in naturally infected cats. Cat type Felis catus

No. of cats 2 1 26 1

Felis concolor

2

Opg or total 6

Reference

7.6  10 1.2  106 1  105 Up to 13  106 106

Ito et al. (1974)

12.5  106 2.4  105

Aramini et al. (1998)

Dubey et al. (1986) Schares et al. (2008a) Oikawa et al. (1990)

public health viewpoint it is necessary to distinguish T. gondii oocysts from oocysts of a related coccidium, H. hammondi present in cat feces. Hammondia hammondi is non-pathogenic (Frenkel and Dubey, 1975). Bioassays, the only definitive way to detect viable oocysts of these parasites currently, are expensive and only a few laboratories in the world have facilities to do them. Although DNA detection is considered highly specific, cross reactivity has been observed between T. gondii and H. hammondi (Schares et al., 2008b). There is little information on the number of oocysts shed by naturally infected cats. Although data in Table 3 indicate that only a few oocysts may be present at any given time, on occasion high numbers of oocysts were detected in cat feces (Table 4).

13

and drier (rain 20 mm). Rarity of rodents in the area (due to regular rodent poison control), and feeding of cats by people were considered as possible factors for this reduced prevalence. Economic underdevelopment and poor hygiene in a country were not the determining factors for low seroprevalence of T. gondii antibodies in cats in Durango, Mexico (Alvarado-Esquivel et al., 2007; Dubey et al., 2009a). Seroprevalence was 21% of 105 cats among those sampled in 2007, and only 9.3% in 150 cats sampled from the same sources a year later (Table 5); all the cats were tested at a cut-off of 1:25 in MAT and all sera were tested by the same person. This low seroprevalence was attributed to low T. gondii prevalence in the local small animal population; T. gondii was not isolated by bioassays of 249 rats, 127 mice, 69 squirrels, and 66 opossums (Dubey et al., 2009a). In conclusion, factors affecting the prevalence of T. gondii in cats are not fully understood and need further investigation. 3.4. Oocyst shedding by wild felids Wild felids can also shed T. gondii oocysts (Table 1). Serological prevalence in various wild felids is given in Table 6. It should be noted that many wild felids in zoos (and also free-ranging) were found to be seropositive and probably already had shed oocysts. These oocysts can be a source of T. gondii infections not only to the zoo animals but also to zoo workers and visitors, especially children.

3.3. Seroprevalence of T. gondii in domestic cats 3.5. Land and sea contamination by T. gondii oocysts Epidemiological data indicate that most cats become infected with T. gondii after birth by eating T. gondii-infected tissues (Dubey and Beattie, 1988). Nearly all cats fed tissue cysts shed oocysts and most seroconverted by 4 weeks post-inoculation (Dubey and Frenkel, 1972; Dubey and Thulliez, 1989). It is most likely that seropositive cats have already shed oocysts. In our opinion seroprevalence provides a good estimate of environmental contamination with oocysts. Data in Table 5 indicate that up to 80% of cats worldwide had T. gondii antibodies. Although it is not possible to compare results in various surveys because of the sample size, age of cats, and the serological tests used, they do provide a guide of the widespread nature of this infection. Prevalence of T. gondii infection varies according to the life style of cats. It is higher in feral cats that hunt for their food than in domestic cats. Seroprevalence of antibodies to T. gondii varied among countries, within different areas of a country, and within the same city (Table 5). The reasons for these variations are many, no generalizations should be made. For example, low seroprevalence (7.3–11%) in Bangkok, Thailand was attributed to the lifestyle of the cats surveyed. Most (95%) people in Thailand are Buddhist, and killing any pet (or any life) is sinful. There are approximately 15,000 cats (30  500 temples) that live permanently around these Buddhist temples, and these cats are fed by the public or monks, mainly a diet of cooked fish and rice (Sukthana et al., 2003). A somewhat similar situation exists in India. There are only limited data on T. gondii infection in cats from India. Most of the population is vegetarian, and very few people keep cats as pets. In addition, there are many stray dogs in India that keep the stray cat population in check. One of us (JPD) for many years has unsuccessfully tried to obtain samples from stay cats in India, because trapping a cat is considered a sin. We are not aware of any data on T. gondii infection in cats from Africa, except two surveys from Egypt that are approximately 20 years old. Afonso et al. (2006) conducted an excellent study of T. gondii antibody seroprevalence in an urban population of domestic cats in Lyon, France. Unexpectedly, the seroprevalence was only 18.6% of 301 cats, approximately half the prevalence in other surveys in Europe (see Table 5). Prevalence was the highest when the weather was hot (>32 °C) and moist (rain >22 mm), or moderate

Cats are everywhere, except the frozen arctic (Dubey, 2009). For example, approximately one-third of households in the USA own a cat and this number is steadily increasing. There are approximately 78 million domestic cats and 73 million feral cats in the US (Conrad et al., 2005). The fate of cat feces disposed of in the toilet or in domestic trash destined for landfills is unknown. It is anticipated that the heat generated and lack of oxygen in landfills will kill some or all oocysts, depending on the conditions. It is likely that oocysts are carried into our homes on shoes contaminated with oocysts on street pavements. It is probable that nearly every farm in the USA has cats. In one study of pig farms in Illinois, 366 cats were trapped on 43 farms, a mean of 8.5 cats per farm, with a mean of six seropositive cats on each farm (Weigel et al., 1999). Toxoplasma gondii oocysts were detected in cat feces, feed, soil or water samples on six farms (Dubey et al., 1995; Weigel et al., 1999). Thus, there is strong potential for T. gondii transmission in rural settings. If one assumes a 30% seropositivity of 151 (78 domestic and 73 feral) million cats and a conservative shedding of 1 million oocysts per cat then there will be enormous numbers of oocysts (50 million  1 million) in the environment. Dabritz et al. (2007a,b) estimated an annual burden of 94–4671 oocysts/m2 in California. The role of wild felids in contamination of the environment is difficult to assess. The bobcat (Lynx rufus) and cougar (Felis concolor) are the two main wild cats in the continental USA. The number of bobcats in the USA is thought to be in the millions and one study estimated thousands of cougars (Conrad et al., 2005). In a recent survey in Pennsylvania, 83% of 131 bobcats were found to have T. gondii antibodies (Mucker et al., 2006) and viable T. gondii was isolated from five of six bobcats from Georgia (Dubey et al., 2004a). Young and weak white-tailed deer and small mammals are common prey for bobcats and 60% of white-tailed deer in Pennsylvania, USA were seropositive for T. gondii (Dubey and Jones, 2008). In addition to live prey, eviscerated tissues from hunted deer and black bears would be a source of infection for wild cats. Thus, a sylvatic cycle of T. gondii in rural USA is feasible and appears to be efficient.

14

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25

Table 5 Seroprevalence of T. gondii antibodies in domestic cats (1988–2008). Location

Reference

Test

No. exam

% Pos.

Cut-off titer

Argentina

Fernández et al. (1995) Venturini et al. (1995) Venturini et al. (1997a,b)

IHA IFA IFA

169 68 100

19.5 25 27

32 8 8

Australia Tasmania Melbourne

Milstein and Goldsmid (1997) Sumner and Ackland (1999)

LAT ELISA

18 103

50 39

64 NS

Austria

Edelhofer and Aspöck (1996)

IFA

456

48.2

40

Bangladesh

Samad et al. (1997)

LAT

24

33.3

64

Belgium (Ghent)

Dorny et al. (2002) de Craeye et al. (2008)

MAT IFA

346 567

70.2 24.9

40 50

Cavalcante et al. (2006b) Garcia et al. (1999) Dubey et al. (2004) Netto et al. (2003) Mendes-de-Almeida et al. (2007) Lucas et al. (1999) Silva et al. (2002) Meireles et al. (2004) Pena et al. (2006) da Silva et al. (2002)

MAT IFA MAT IHA IHA IFA MAT ELISA MAT MAT

63 163 58 41 118 248 502 100 237 100

87.3 73 84.4 24.4 72 17.7 26.3 40 35.4 19

25 16 20 NS 16 16 20 NS 25 16

Canada (Ontario)

Quesnel et al. (1997)

IHA

25

12

64

Chile Valdivia city

Stutzin et al. (1989) Ovalle et al. (2000)

IHA IFA

27 97

85.2 33

16 16

Colombia

Londoño et al. (1998) Dubey et al. (2006)

IFA MAT

28 170

89.3 35.8

NS 20

Czech Republic

Svoboda et al. (1988) Svobodová et al. (1998) Sedlak and Bartova (2006,2007)

DT IFA IFA

620 390 286

48.7 61.5 44.1

4 10 40

Egypt Cairo Gharbia

Aboul-Magd et al. (1988) Abu-Zakham et al. (1989)

IFA IHA

177 114

58.8 18.4

64 64

France (Lyon)

Afonso et al. (2006)

MAT

301

18.6

40

Galapagos (Isabela Island)

Levy et al. (2008)

ELISA

52

63

64

Germany

Knaus and Fehler (1989) Tenter et al. (1994) Hecking-Veltman et al. (2001)

DT ELISA ELISA

267 306 300

59.9 45 65.6

16 NS NS

Guatemala (Petén region)

Lickey et al. (2005)

MAT

30

53

32

Hungary

Hornok et al. (2008)

IFA

330

47.6

20

Haddadzadeh et al. (2006) Hooshyar et al. (2007) Sharif et al. (2009)

IFA IFA LAT

100 50 100

63 86 40

32 20 1

Israel (Jerusalem)

Salant and Spira (2004)

ELISA

1062

16.8

80

Italy Veneto Verona

Natale et al. (2007) D’Amore et al. (1997)

IHA MAT

189 490

69.3 33.3

200 64

Maruyama et al. (2003) Khin-Sane-Win et al. (1997) Fujinami et al. (1983) Furuya et al. (1993) Kimbita et al. (2001) Huang et al. (2002) Huang et al. (2004) Oikawa et al. (1990) Nogami et al. (1998) Maruyama et al. (1998)

LAT LAT IHA LAT ELISA ELISA LAT IFA LAT LAT

1447 231 171 726 193 192 179 335 800 471

5.4 19 47.1 10.5 20.7 21.9 18.4 25.7 6 8.7

64 64 64 32 NS 64 64 4 32 64

Afonso et al. (2007)

MAT

276

51.1

40

Sohn and Nam (1999) Kim et al. (2008)

WB LAT

198 174

13.1 8.1

200 32

Lee et al. (2008)

PCR

106

47.2

Chandrawathani et al. (2008)

IFA

55

14.5

Brazil Amazon Paraná Rio de Janeiro São Paulo

Iran Kashan Sari

Japan Horraido and Okinawa Hyogo Kanto Saitama Saporo and Tokyo Saitama Saitama Various areas

Kerguelen Islands (French territory) Korea (South)

Malaysia

200 (continued on next page)

15

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25 Table 5 (continued) Location

Reference

Test

No. exam

% Pos.

Cut-off titer

Garcia-Márquez et al. (2007) Alvarado-Esquivel et al. (2007) Dubey et al. (2009a) Galván Ramirez et al. (1999) Besné-Mérida et al. (2008)

ELISA MAT MAT ELISA ELISA

80 105 150 24 169

28.8 21 9.3 70.8 21.8

NS 25 25 NS NS

Pakistan

Shahzad et al. (2006)

LAT

50

56

16

Panama (Panama City)

Frenkel et al. (1995)

MAT

241

45.6

1

Yu et al. (2006) Yu et al. (2008) Chen et al. (2005) Yuan et al. (2004) Chen (2001) Lu et al. (1997) Fu et al. (1995) Dubey et al. (2007a) Shen et al. (1990)

ELISA ELISA OR LAT ELISA ELISA ELISA IHA IHA MAT IHA

128 335 114 75 105 142 200 34 47

14.1 14.9 23.7 57.3 31.4 38.1 46 79.4 2.1

NS NS NS NS NS 64 64 20 64

Poland

S´mielewska-Łos´ and Pacon´ (2002) Michalski and Platt-Samoraj (2004)

LAT MAT

200 17

52.5 70.6

64 20

Portugal (northeastern)

Lopes et al. (2008)

MAT

204

35.8

20

Puerto Rico (Mona Island)

Dubey et al. (2007b)

MAT

19

70.3

20

Singapore

Chong et al. (1993)

LAT

772

30.3

64

Slovak Republic

Ondrejka et al. (2007)

ELISA

164

18.9

NS

Spain

Miró et al. (2004) Montoya et al. (2008) Gauss et al. (2003) Millán et al. (2009)

IFA IFA MAT MAT

585 592 220 25

32.3 26 45 502

80 80 25 25

Sweden

Uggla et al. (1990) Ljungström et al. (1994)

ELISA IFA

244 60

42 46.6

25

Taiwan

Lin et al. (1990) Tsai et al. (1997)

KELA LAT

117 202

7.7 5.5

32

Thailand Bangkok

Sukthana et al. (2003) Sriwaranard et al. (1981) Jittapalapong et al. (2007)

DT IHA LAT

315 40 592

7.3 57.5 11

16 256 64

Inci et al. (1996) Özkan et al. (2008) Karatepe et al. (2008)

DT DT DT

65 99 72

43 40.3 76.4

16 4 16

Dabritz et al. (2007a) Miller et al. (2008) Hill et al. (2000) Luria et al. (2004) Lappin et al. (1992) Lappin et al. (1989) Danner et al. (2007) Dubey et al. (1995) Smith et al. (1992) Hill et al. (1998) Witt et al. (1989) de Camps et al. (2008) Nutter et al. (2004) Dubey et al. (2002) Rodgers and Baldwin (1990) Dubey et al. (2009b) DeFeo et al. (2002) Vollaire et al. (2005)

ELISA IFA IFA ELISA ELISA ELISA ELISA ELISA MAT MAT MAT IFA MAT MAT MAT LAT MAT MAT ELISA

194 194 5 206 553 124 188 67 391 74 20 585 34 176 275 618 210 200 12628

24.2 36.1 60 23.6 10.8 74.2 60.7 37.7 68.3 41.9 80 15.2 29.4 50.6 48 22 19.5 42 31.6

64 16 320 64 NS NS NS 64 25 32 32 32 25 25 25 16 25 25 NS

Asthana et al. (2006) Dubey et al. (2009c) Moura et al. (2007) Dubey et al. (2009d)

MAT MAT MAT MAT

40 176 106 96

35 28.9 84.9 73.9

25 25 25 10

Mexico Colima Durango Guadalajara Mexico City

People’s Republic of China Beijing Guangzhou Hebei Hubei Shanghai Shandong Guangzhou Guangdong

Barcelona Andalusia

Turkey Ankara Nigde USA California

Colorado Florida Florida, Georgia, Ohio Georgia Hawaii Illinois Iowa Maryland Midwestern zoos North Carolina Ohio Oklahoma Pennsylvania Rhode Island Nationwide West Indies Grenada St Kitts

DT, dye test; ELISA, enzyme-linked immunosorbent assay; IFA, indirect fluorescent antibody; IHA, indirect hemagglutination; LAT, latex agglutination test; MAT, modified agglutination test; PCR, polymerase chain reaction; NS, not stated; WB, Western blot.

The role of cougars in the sylvatic cycle of T. gondii has not been established. As stated earlier, a large waterborne outbreak of toxo-

plasmosis in humans was epidemiologically linked to oocyst contamination of a water reservoir in British Columbia, Canada (Bowie

16

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25

Table 6 Seroprevalence of T. gondii antibodies in wild felids. Species

Location

Reference

Test

No. exam

% Pos.

Panthera spp. P. tigris (tiger)

Brazil Thailand USA Florida Various areas

Silva et al. (2001a) Thiangtum et al. (2006)

MAT LAT

2 18

100 27.8

Cut-off titer 20 64

Lappin et al. (1991) Spencer et al. (2003)

ELISA IFA

4 11

75 63.6

64 50

P. t. altaica (Amur tiger)

USA - Mid western zoos

de Camps et al. (2008)

MAT

18

27.8

25

P. leo (lion)

Botswana Brazil Southern Africa

Penzhorn et al. (2002) Silva et al. (2001a) Cheadle et al. (1999) Spencer and Morkel (1993) Penzhorn et al. (2002) Thiangtum et al. (2006)

IFA MAT IFA ELISA IFA LAT

53 27 41 66 42 7

92 51.8 90.2 98 100 14.3

20 20 50 NS 20 64

Lappin et al. (1991) de Camps et al. (2008) Spencer et al. (2003) Penzhorn et al. (2002) Hove and Mukaratirwa (2005)

ELISA MAT IFA IFA MAT

2 22 10 21 26

100 54.5 80 100 92.3

64 25 50 20 25

Silva et al. (2001a) Penzhorn et al. (2002) Cheadle et al. (1999) Penzhorn et al. (2002) Thiangtum et al. (2006)

MAT IFA IFA IFA LAT

3 1 4 7 19

100 100 75 86 15.8

20 20 50 20 64

Spencer et al. (2003) Lappin et al. (1991) de Camps et al. (2008)

IFA ELISA MAT

1 3 1

100 66.6 100

50 64 25

Thailand USA Florida Mid western zoos Various areas Zimbabwe P. pardus (leopard)

P. onca (jaguar)

P. uncia (snow leopard, panthera snow)

Lynx spp. L. rufus (bobcat)

Brazil Botswana Southern Africa South Africa Thailand USA California Florida Mid western zoos French Guiana Brazil Thailand USA Various areas Mid western zoos

Demar et al. (2008) Silva et al. (2001b) Thiangtum et al. (2006)

MAT MAT LAT

1 212 3

100 63.2 33.3

4000 20 100

Spencer et al. (2003) de Camps et al. (2008)

IFA MAT

2 1

100 100

50 25

USA Mid western zoos Thailand

de Camps et al. (2008) Thiangtum et al. (2006)

MAT LAT

14 1

35.7 100

25 64

Labelle et al. (2001) Kikuchi et al. (2004)

MAT LAT

10 6

40 66.6

25 64

Kikuchi et al. (2004) Riley et al. (2004) Miller et al. (2008) Dubey et al. (2004) Smith and Frenkel (1995) Mucker et al. (2006) Spencer et al. (2003)

LAT LAT IFA MAT DT MAT IFA

52 25 3 6 2 131 3

50 88 100 83.3 50 83 333

64 64 320 25 8 25 50

Labelle et al. (2001)

MAT

106

44

25

Spencer et al. (2003)

IFA

1

100

50

Silva et al. (2001a) Philippa et al. (2004) Labelle et al. (2001) Ryser-Degiorgis et al. (2006)

MAT ELISA MAT MAT

1 5 106 207

100 20 44 75

20 NS 25 40

Sobrino et al. (2007) Roelke et al. (2008) Millán et al. (2009)

MAT IHA, LAT MAT

27 57 26

81.5 44 80.7

25 64, 25 25

Spencer et al. (2003) de Camps et al. (2008)

IFA MAT

1 4

100 50

50 25

Cheadle et al. (1999) Thiangtum et al. (2006)

IFA LAT

23 1

43.4 100

50 64

Spencer et al. (2003)

IFA

9

77.7 50 (continued on next page)

Canada Québec Mexico USA California

Georgia Kansas, Missouri Pennsylvania Various areas L. canadiensis (lynx)

L. lynx (Eurasian lynx)

Canada Québec USA California Brazil Canada Sweden

L. pardinus (Iberian lynx, polecat)

Spain

L. caracal (Caracal caracal)

USA California Mid western zoo

Acinonyx spp. Acinonyx jubatus (cheetah)

Southern Africa Thailand USA Various areas

17

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25 Table 6 (continued) Species

Location Florida Mid western zoos

Felis spp. F. concolor (cougar, puma, or Florida panther, mountain lion)

Brazil Canada Central and South America Mexico USA California

Florida Mid western zoos Various areas F. c. vancouverensis

Canada Vancouver Island

Reference

Test

No. exam

% Pos.

Stover et al. (1990) de Camps et al. (2008)

IHA MAT

16 22

68.7 27.3

Cut-off titer 64 25

Silva et al. (2001b) Kikuchi et al. (2004) Philippa et al. (2004) Kikuchi et al. (2004) Kikuchi et al. (2004) Kikuchi et al. (2004) Paul-Murphy et al. (1994) Spencer et al. (2003) Miller et al. (2008) Roelke et al. (1993) Lappin et al. (1991) de Camps et al. (2008) Spencer et al. (2003)

MAT LAT ELISA LAT LAT LAT LAT IFA IFA ELISA ELISA MAT IFA

172 23 15 83 12 320 36 42 26 38 6 8 5

48.3 34.8 7 32.5 16.7 19.1 58 25.5 92.3 9 83.3 62.5 60

20 64 NS 64 64 64 32 50 40 48 64 25 50

Stephen et al. (1996) Aramini et al. (1998)

IHA MAT

5 12

100 92

40 25

F. chaus (jungle cat)

Brazil

Silva et al. (2001a)

MAT

2

100

20

F. euptilurus (Amur leopard cat)

USA Midwestern zoos

de Camps et al. (2008)

MAT

1

100

25

F. margarita (sand cat)

United Arab Emirates

Pas and Dubey (2008b)

MAT LAT

6 4

100 75

25 64

F. manul (Otocolobus manul), Pallas cat

Austria USA Colorado Midwestern zoos Ohio Oklahoma Wisconsin

Basso et al. (2005)

MAT

8

100

40

Kenny et al. (2002) de Camps et al. (2008) Swanson (1999) Ketz-Riley et al. (2003) Dubey et al. (1988)

LAT MAT ELISA KELA MAT

4 5 14 6 3

100 20 79 100 67

32 25 NS 2048 64

F. lynx

USA Alaska

Zarnke et al. (2001)

MAT

255

15.3

25

F. silvestris (wild cat)

UK Spain

Yamaguchi et al. (1996) Sobrino et al. (2007)

IHA MAT

45 6

62 50

16 25

F. s. gordoni (Gordon’s cat)

United Arab Emirates

Pas and Dubey (2008a)

MAT

36

86.1

25

F. serval (Leptailurus serval, serval)

Brazil USA Florida Various areas

Silva et al. (2001a)

MAT

2

100

20

Lappin et al. (1991) Spencer et al. (2003)

ELISA IFA

2 3

50 33.3

64 50

Thailand

Thiangtum et al. (2006)

LAT

8

12.5

64

USA – Mid western zoos Thailand

de Camps et al. (2008) Thiangtum et al. (2006)

MAT LAT

4 27

25 22.2

25 64

Bolivia Chaco Brazil

Fiorello et al. (2006) Silva et al. (2001b)

ELISA MAT

8 12

25 75

NS 20

O. colocolo (Pampas cat)

Brazil

Silva et al. (2001b)

MAT

8

12.5

20

Leopardus spp. L. pardalis (ocelot)

Bolivian Chaco Brazil USA – Alabama

Fiorello et al. (2006) Silva et al. (2001b) Spencer et al. (2003)

ELISA MAT IFA

10 168 1

100 57.7 100

NS 20 50

L. tigrinus (oncilla)

Brazil

Silva et al. (2001b)

MAT

131

51.9

20

L. wiedii (margay)

Brazil

Silva et al. (2001b)

MAT

63

55.5

20

Neofelis nebulosa (clouded leopard)

USA – California Mid western zoos Thailand

Spencer et al. (2003) de Camps et al. (2008) Thiangtum et al. (2006)

IFA MAT LAT

2 7 16

50 14.3 12.5

50 25 64

Herpailurus yogouaroundi (jaguarundi)

Brazil USA – Florida

Silva et al. (2001b) Lappin et al. (1991)

MAT ELISA

99 1

45.9 100

20 64

F. temmincki (asian golden cat, golden cat) F. viverrinus (fishing cat)

Oncifelis spp. O. geoffroyi (Geoffroy’s cat)

DT, dye test; ELISA, enzyme-linked immunosorbent assay; IFA, indirect fluorescent antibody; IHA, indirect hemagglutination; LAT, latex agglutination test; MAT, modified agglutination test; NS, not stated.

et al., 1997). Although oocysts were not detected in drinking water taken from the reservoir after the outbreak (Isaac-Renton et al.,

1998), viable oocysts were detected in rectal contents (sample A) of a wild trapped cougar (Table 4) and in a fecal pile (sample B) in

18

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25

the vicinity of the reservoir (Aramini et al., 1998). It is noteworthy that many oocysts were present in feces of cougars (Table 4). Dabritz et al. (2007a,b) considered that the level of land contamination stated above is likely to be high enough for oocysts to reach marine waters (Dabritz et al., 2007a,b), where mammals such as sea otters can become infected. Sea otters eat approximately 25% of their body weight in invertebrate prey each day (Conrad et al., 2005). Cold blooded animals, including fish, are not hosts for T. gondii. With respect to oocysts, it is not known if the sporozoite excysts after ingestion by cold blooded animals. Mollusks, however, can act as transport hosts for T. gondii oocysts (Arkush et al., 2003; Lindsay et al., 2004; Miller et al., 2008). In addition, sea otters might ingest oocysts directly from marine water, but how much marine water is cycled through the gut of sea otters in a day is unknown (it is likely to be large quantities). Antibodies to T. gondii were found in a variety of marine mammals including sea otters, dolphins, seals and walruses. Prevalence of T. gondii antibodies in sea otters was high but varied between 47% and 100%, depending on the category (live versus dead), source (California versus Washington), and the serological test used (see Dubey and Jones, 2008). A very high seroprevalence of T. gondii antibodies was found in the bottlenose dolphin (Tursiops truncatus) from California, Florida, North Carolina and South Carolina, indicating that marine mammals on both coasts of the USA are exposed to T. gondii.

4. Direct detection of T. gondii oocysts in water Detection of T. gondii oocysts in environmental samples (soil, water, feed) is technically difficult. Additionally, T. gondii oocysts are highly infective for humans. Dubey (2009) has described procedures for recovering oocysts from cat feces and safety precautions for handling samples potentially contaminated with T. gondii. There is no rapid detection method for T. gondii oocysts in water or other environmental samples. Traditionally, detection of protozoa in water required their concentration from large volumes of water by filtration or centrifugation, isolation from concentrated particulates by immunomagnetic separation (IMS) or other methods, and detection by immunofluorescence microscopy, infection of cultured cells, biochemistry, bioassays, molecular techniques or combinations of these (Dumètre and Dardé, 2003; Zarlenga and Trout, 2004). For T. gondii oocysts, there are no commercially available IMS techniques, no widely available immunofluorescent staining reagents, and no standardized cultivation protocols. Identification of oocysts from environmental samples has included differential floatation and mouse inoculation (Isaac-Renton et al., 1998), filtration through micropore filters, and bioassays (de Moura et al., 2006). Recently, IMS techniques have been developed for the isolation of T. gondii oocysts and sporocysts in water (Dumètre and Dardé, 2005, 2007). Both the oocyst and sporocyst IMS assays, however, had poor specificity because antibodies cross-reacted with water debris and the sporocyst wall of H. hammondi, Hammondia heydorni, and Neospora caninum (Dumètre and Dardé, 2007). Schares et al. (2008b) recently developed new primers to distinguish H. hammondi and T. gondii oocyst DNA. PCR is becoming a favored technique for detection of T. gondii oocysts in water (Jones et al., 2000; Kourenti and Karanis, 2004, 2006; Schwab and McDevitt, 2003; Sroka et al., 2007; Villena et al., 2004) over the conventional mouse bioassay (Isaac-Renton et al., 1998; Villena et al., 2004), as it reduces the detection time from weeks to 1–2 days. Although they have been developed for detection of T. gondii in clinical specimens (Switaj et al., 2005), no real-time PCR assays have been adapted for detection of oocysts in water samples, possibly because of expected high concentra-

tions of PCR inhibitors and low numbers of T. gondii oocysts in environmental samples (Villena et al., 2004). There are several unresolved issues regarding the effectiveness of PCR detection of T. gondii oocysts in water. The most readily available method for isolation of T. gondii oocysts from water samples is flocculation or sucrose floatation prior to DNA extraction (Kourenti and Karanis, 2004, 2006; Sroka et al., 2007; Villena et al., 2004). Because sucrose flotation and flocculation result in oocyst losses, the recovery rate of using these methods is poor. For DNA extraction, the phenol–chloroform method or QIAamp(r) mini kit is frequently used (Dumètre and Dardé, 2007; Kourenti and Karanis, 2004, 2006; Schwab and McDevitt, 2003; Villena et al., 2004). When oocysts are recovered from water either by the EPA Information Collection Rule (ICR) method (USEPA, 1995) or EPA Method 1623 (USEPA, 2001) without purification by IMS, neither the conventional phenol chloroform DNA extraction nor the QIAamp(r) mini kit are effective at removing PCR inhibitors (Jiang et al., 2005; Villena et al., 2004; Xiao et al., 2000). Borchardt et al. (2009) recently reported a continuous separation channel centrifugation for concentrating T. gondii and Cyclospora cayetanensis oocysts from surface water and drinking water.

5. Environmental resistance of oocysts Toxoplasma gondii oocysts are highly resistant to environmental influences, including freezing (Tables 7 and 8). Oocysts are not killed by chemical and physical treatments currently applied in water treatment plants, including chlorination, ozone treatment, and ultraviolet rays. 6. Epidemiology Toxoplasma gondii has been known to be spread by food and soil for many years. Oocysts can survive for years in the soil (Frenkel et al., 1975), and it makes intuitive sense that oocysts can wash into bodies of water from the soil. Toxoplasma gondii oocysts survive up to 54 months in cold water (Dubey, 1998), so drinking unfiltered water contaminated with T. gondii can lead to infection. Toxoplasma gondii oocysts are about 10–12 lm in size, and parasites this size or smaller (for example Cryptosporidium spp. or Giardia spp.) should be filtered out by most normally operating municipal water filtering systems in developed countries that use coagulation, flocculation, and settling prior to filtration (Betancourt and Rose, 2004), but not necessarily by filters in small water systems or malfunctioning water filters. Water has been implicated in outbreaks of toxoplasmosis for many years. In 1979, an outbreak occurred in US Army soldiers during a 3-week training exercise in Panama (Benenson et al., 1982). Drinking unfiltered-, iodine treated-, water from streams contaminated by jungle cats was implicated as the source of infection; for food, the battalion used only canned rations supplemented by occasional fruit. As noted above in the section on contamination by oocysts, unfiltered water was implicated as the source of a large toxoplasmosis outbreak in the Victoria area of British Columbia in 1995 (Bowie et al., 1997; Burnett et al., 1998). Of the 100 persons who met the outbreak case definition, 19 had retinitis, 51 had lymphadenopathy, 4 had other symptoms consistent with toxoplasmosis, 7 had other symptoms, and 18 were symptom free but were identified as case-patients by serologic methods (for 1 case-patient, symptoms were not ascertained). Mapping (Eng et al., 1999) and case-control studies implicated one of the reservoirs supplying water to the Greater Victoria area. Peaks in coliform counts and turbidity in the reservoir water were associated with excessive rainfall and runoff into the reservoir, and each peak preceded a peak in the epidemic curve. Based on

19

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25 Table 7 Effect of disinfectants on T. gondii oocysts.e Reagent

Concentration (%)

Duration of treatment

Killed

References

Formalin Sulfuric acid + dichromate

10 63/7 63/7 95/5 95/5 5.0 5.0 6.0 0.1 0.1 0.1 5.5 5.5 2.0 2.0 7.0 33

48 h 30 min 24 h 1h 24 h 10 min 30 min 24 h 24 h 24 h 24 h 1h 3h 10 min 3h 10 min 24 h 24 h 24 h 11 days 2 days 1h 3h 24 h 48 h 24 h 12 min 20 min

No No Yes No Yes No Yes No No No No No Yes No Yes Yes No No No Yes No No Yes No Yes No No No Yes/No Yes/No

Ito et al. (1975) Dubey et al. (1970)

Ethanol + acetic acid Ammonium hydroxide Sodium hyporchlorite (Purex) Sodium lauryl sulfate Cetyl trimethyl ammonium Tween 80 Ammoniaa, liquid Tincture of iodine

Aldesolb Tincture of Hibiseptc Izosan-Gd Drying at relative humidity Lomasept Neo Kurehasol Paracetic acid Chlorination of water Ozone treatment of water Ultravoilet irradiation a b c d e

0.02 19 0 1 5 5 100 mg/L 6 mg/L 9.4 mg/L >500 mJ/cm2 40 mJ/cm2

Dubey et al. (1970) Dubey et al. (1970) Dubey et al. (1970) Dubey et al. (1970) Dubey et al. (1970) Dubey et al. (1970) Dubey et al. (1970) Frenkel and Dubey (1972) Frenkel and Dubey (1972) Frenkel and Dubey (1972) Frenkel and Dubey (1972) Frenkel and Dubey (1972) Kuticˇic´ and Wilkerhauser (1993) Kuticˇic´ and Wilkerhauser (1993) Kuticˇic´ and Wilkerhauser (1993) Frenkel and Dubey (1972) Frenkel and Dubey (1972) Ito et al. (1975) Ito et al. (1975) Ito et al. (1975) Ito et al. (1975) Wainwright et al. (2007a) Wainwright et al. (2007a) Dumetre et al. (2008) Wainwright et al. (2007b) Dumetre et al. (2008)

Undiluted household ammonia. Aldesol, a solution for disinfection, contains 5 g benzalchoniumchloride, 6 g glutaraldehyde, and 8 g gloxal in 100 g of solution. Hibisept tincture contains 0.5 g chorhexidine gluconate in 70% ethanol in 100 ml of tincture. Izosan-G granulate contains 99 g of sodium dichloroizicyanurate-dihydrate in 100 g granulate. Modified from Dubey (2004).

Table 8 Effect of environmental influences on T. gondii oocysts. Temperature (°C) Indoors

Medium

Duration of treatment

Killed

References

21 4 4 10 15 20–22 30 35 40 40 45 50 52 55

Water 2% H2SO4 Water Water Water Water Water Water Water Water Water Water Water Water

60 Texas 6.5–37.5 Kansas 20–35 Costa Rica 15–30

Native feces Native feces Native feces

28 days 578 days 1620 days 200+ days 200+ days 548 days 107 days 32 days 28 days 24 h 3 days 60 min 5 min 1 min 2 min 1 min 334–410 days 548 days 56–357 days

No No No No No No No No Yes No No No No No Yes Yes No No No

Frenkel and Dubey (1973) Dubey (1977) Dubey (1998) Dubey (1998) Dubey (1998) Hutchison (1967) Dubey (1998) Dubey (1998) Dubey (1998) Dubey (1998) Dubey (1998) Dubey et al. (1970) Dubey (1998) Dubey (1998) Dubey (1998) Dubey (1998) Yilmaz and Hopkins (1972) Frenkel et al. (1975) Frenkel et al. (1975)

the rates of infection in screened pregnant women and persons selected as potential controls, an estimated 2894–7718 individuals in the Greater Victoria area were infected with T. gondii (Bowie et al., 1997). It was hypothesized that domestic cats (Felis catus) or cougars (Felis concolor) contaminated the reservoir (Aramini et al., 1999). An investigation of the Victoria watershed determined the presence of an endemic T. gondii cycle. Domestic cats and cougars

were observed in the watershed, both showed serologic evidence of T. gondii infection, and cougars were found to be shedding T. gondii oocysts (Aramini et al., 1998, 1999). As a result of this investigation, researchers developed a method for detection of T. gondii oocysts in water based on the US Environmental Protection Agency method for detection of Cryptosporidium oocysts (Isaac-Renton et al., 1998). However, they were not able to detect

20

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25

oocysts in the reservoir water. The reservoir was drained after the outbreak. Since the 1990s waterborne T. gondii has been implicated in numerous outbreaks. In Santa Isabel do Ivai, Brazil, waterborne T. gondii was thought to be responsible for an outbreak involving 155 persons served by an underground tank reservoir delivering unfiltered water (de Moura et al., 2006). It was postulated that runoff contaminated with T. gondii oocysts entered the reservoir because a cat with a litter of kittens lived on top of the underground tank reservoir, which was not adequately sealed. Water from the reservoir that was stored in a school holding tank was found to be contaminated with T. gondii identified by bioassay and PCR. As a result of the investigation, the reservoir was closed and a new reservoir constructed. Further epidemiological studies indicated that toxoplasmosis was endemic in cats in that area. Toxoplasma gondii antibodies were found in 84% of 58 cats trapped in the town of Santa Isabel do Ivai, and viable T. gondii was isolated from 73.4% of them (Dubey et al., 2004b, see Table 5). Waterborne toxoplasmosis has been suggested or implicated in numerous other investigations in many areas of the world, including: Brazil (Heukelbach et al., 2007 [homemade ice]; Amendoeira et al., 2003; Cavalcante et al., 2006a; Bóia et al., 2008), Columbia (López-Castillo et al., 2005), India (Palanisamy et al., 2006; Hall et al., 1999), Poland (Paul, 1998), Turkey (Ertug et al., 2005), Cuba (Martínez Sáchez et al., 1991), Granada (Asthana et al., 2006), Taiwan (Hung et al., 2007), and China (Lin et al., 2008). Water has also been implicated as a source of endemic T. gondii infection in Brazil and Guatemala. Drinking unfiltered water was associated with an increase in T. gondii antibody prevalence in both lower and middle socio-economic groups in Rio de Janeiro state, Brazil (Bahia-Oliveira et al., 2003), and drinking unfiltered well water was found to be associated with a higher T. gondii prevalence in rural Guatemalan children (Jones et al., 2005). In addition, in a Polish farm population, there was a positive correlation between the consumption of unboiled well water and the presence of T. gondii antibodies (Sroka et al., 2006). Toxoplasma gondii was identified by both microscopic and PCR testing in some of the samples collected from wells on the Polish farms. Although studies in the literature have examined drinking water as a risk factor for T. gondii infection, one wonders if recreational exposure to contaminated rivers, lakes, streams, or ponds (with inadvertent swallowing of water) also periodically results in infection. The results of some epidemiologic studies in industrialized countries examining meat and soil-related risk factors for T. gondii infection indicated that a large proportion of human infections cannot be explained by contaminated food or soil exposure (Cook et al., 2000; Boyer et al., 2005). It is possible that ingestion of inadequately treated water or inadvertent ingestion of recreational water from streams, lakes, or ponds could explain some human infections. 7. Clinical toxoplasmosis in humans Water contaminated with T. gondii has the potential to spread infection to a large number of people, as illustrated by the outbreaks in Canada (Bowie et al., 1997) and Brazil (de Moura et al., 2006) described above. Acute infection in a previously uninfected pregnant woman can lead to congenital disease with retinochoroiditis, neurologic, or systemic disease occurring in the infant. Acute T. gondii infection can also lead to ocular lesions in up to 2% of those infected (Holland, 2003), some resulting in loss of vision. In addition, T. gondii leads to a chronic infection that can reactivate causing severe or even fatal encephalitis or other systemic disease in immunocompromised persons (Luft et al., 1983, 1984). Some outbreaks with water implicated as a mode of transmission have led to high attack rates, suggesting that the dosage of oocysts can be quite high (or the organism was particularly virulent)

(Benenson et al., 1982). The elimination of T. gondii contamination of water can potentially result in prevention of significant morbidity and mortality. 8. Prevention and control Although the level of contamination is not usually known, several measures can help prevent T. gondii infection from water. People should avoid ingesting untreated water from streams, lakes, rivers, or ponds, even during recreational activities. If untreated surface water is to be consumed or it is the main source of drinking water, filtering (absolute 1 lm filter) or boiling will eliminate T. gondii. Chlorine treatment will not inactivate T. gondii, however tincture of iodine (2%) will inactivate T. gondii with a long (3 h) exposure (Table 7). When possible, access of cats to the areas around drinking water tanks or reservoirs should be limited. In developed countries, cat feces should not be flushed into the municipal sanitation system, but rather bagged and disposed in trash that will be deposited in a landfill. In addition, public water supplies that could be contaminated by T. gondii or other parasites should be filtered as part of the treatment process sufficiently to eliminate Cryptosporidium spp. (3–5 lm), which should also eliminate T. gondii oocysts (10–12 lm). Travelers should also avoid drinking untreated or inadequately treated water and be aware that in some areas of the world municipal water in not adequately treated or filtered. Where possible, cat owners should be encouraged to keep their cats indoors in order to reduce hunting for rodents and birds, which leads to feline infection and oocyst shedding. In addition, cats should not be feed raw or undercooked meat. For further information, general guidelines for prevention of T. gondii infection have been published (Lopez et al., 2000). To help prevent environmental contamination with oocysts, future studies could focus on optimal methods to filter T. gondii in municipal water and methods to inactivate T. gondii in cat litter or bind the feces so they do not disperse in the environment. Another area for further study is the possible impact of recreational water use and inadvertent swallowing of water on acquisition of T. gondii infection. Finally, newer approaches to water treatment (for example, improved filtering methods, or new methods of chemical inactivation) could be explored further. Acknowledgment We thank Dr. L. Xiao for his help with methods to detect oocysts in environmental samples. References Aboul-Magd, L.A., Tawfik, M.S., Arafa, M.S., El-Ridi, A.M.S., 1988. Toxoplasma infection of cats in Cairo area as revealed by IFAT. Journal of the Egyptian Society of Parasitology 18, 403–409. Abu-Zakham, A.A., El-Shazly, A.M., Yossef, M.E., Romela, S.A., Handoussa, A.E., 1989. The prevalence of Toxoplasma gondii antibodies among cats from Mahalla ElKobra, Gharbia Governorate. Journal of the Egyptian Society of Parasitology 19, 225–229. Afonso, E., Thulliez, P., Gilot-Fromont, E., 2006. Transmission of Toxoplasma gondii in an urban population of domestic cats (Felis catus). International Journal for Parasitology 36, 1373–1382. Afonso, E., Thulliez, P., Pontier, D., Gilot-Fromont, E., 2007. Toxoplasmosis in prey species and consequences for prevalence in feral cats: not all prey species are equal. Parasitology 134, 1963–1971. Akuzawa, M., Mochizuki, M., Yasuda, N., 1987. Hematological and parasitological study of the Iriomote cat (Prionailurus iriomotensis). Canadian Journal of Zoology 65, 946–949. Alvarado-Esquivel, C., Liesenfeld, O., Herrera-Flores, R.G., Ramírez-Sánchez, B.E., González-Herrera, A., Martínez-García, S.A., Dubey, J.P., 2007. Seroprevalence of Toxoplasma gondii antibodies in cats from Durango City, Mexico. Journal of Parasitology 93, 1214–1216. Amendoeira, M.R.R., Sobral, C.A.Q., Teva, A., de Lima, J.N., Klein, C.H., 2003. Inquérito sorológico para a infecção por Toxoplasma gondii em ameríndios

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25 isolados, Mato Grosso. Revista da Sociedade Brasileira de Medicina Tropical 36, 671–676. Aramini, J.J., Stephen, C., Dubey, J.P., 1998. Toxoplasma gondii in Vancouver Island cougars (Felis concolor vancouverensis): serology and oocyst shedding. Journal of Parasitology 84, 438–440. Aramini, J.J., Stephen, C., Dubey, J.P., Engelstoft, C., Schwantje, H., Ribble, C.S., 1999. Potential contamination of drinking water with Toxoplasma gondii oocysts. Epidemiology and Infection 122, 305–315. Arkush, K.D., Miller, M.A., Leutenegger, C.M., Gardner, I.A., Packham, A.E., Heckeroth, A.R., Tenter, A.M., Barr, B.C., Conrad, P.A., 2003. Molecular and bioassay-based detection of Toxoplasma gondii oocyst uptake by mussels (Mytilus galloprovincialis). International Journal for Parasitology 33, 1087–1097. Asthana, S.P., Macpherson, C.N.L., Weiss, S.H., Stephens, R., Sharma, R.N., Dubey, J.P., 2006. Seroprevalence of Toxoplasma gondii in pregnant women and cats in Grenada, West Indies. Journal of Parasitology 92, 644–645. Bahia-Oliveira, L.M.G., Jones, J.L., Azevedo-Silva, J., Alves, C.C.F., Oréfice, F., Addiss, D.G., 2003. Highly endemic, waterborne toxoplasmosis in north Rio de Janeiro State, Brazil. Emerging Infectious Diseases 9, 55–62. Barutzki, D., Schaper, R., 2003. Endoparasites in dogs and cats in Germany 1999– 2002. Parasitology Research 90, S148–S150. Basso, W., Edelhofer, R., Zenker, W., Möstl, K., Kübber-Heiss, A., Prosl, H., 2005. Toxoplasmosis in Pallas’ cats (Otocolobus manul) raised in captivity. Parasitology 130, 293–299. Beelitz, P., Göbel, E., Gothe, R., 1992. Fauna und Befallshäufigkeit von Endoparasiten bei Katzenwelpen und ihren Müttern unterschiedlicher Haltung in Süddeutschland. Tierärztliche Praxis 20, 297–300. Benenson, M.W., Takafuji, E.T., Lemon, S.M., Greenup, R.L., Sulzer, A.J., 1982. Oocysttransmitted toxoplasmosis associated with ingestion of contaminated water. New England Journal of Medicine 307, 666–669. Besné-Mérida, A., Figueroa-Castillo, J.A., Martínez-Maya, J.J., Pastén, H.L., CalderónSegura, E., Correa, D., 2008. Prevalence of antibodies against Toxoplasma gondii in domestic cats from Mexico City. Veterinary Parasitology 157, 310–313. Betancourt, W.Q., Rose, J.B., 2004. Drinking water treatment processes for removal of Cryptosporidium and Giardia. Veterinary Parasitology 126, 219–234. Bóia, M.N., Carvalho-Costa, F.A., Sodré, F.C., Pinto, G.M.T., Amendoeira, M.R.R., 2008. Seroprevalence of Toxoplasma gondii infection among Indian people living in Iauareté, São Sabriel da Cachoeira, Amazonas, Brazil. Revista do Instituto de Medicina Tropical de São Paulo 50, 17–20. Borchardt, M.A., Spencer, S.K., Bertz, P.D., Ware, M.W., Dubey, J.P., Lindquist, H.D.A., 2009. Concentrating Toxoplasma gondii and Cyclospora cayetanensis from surface water and drinking water by continuous separation channel centrifugation. Journal of Applied Microbiology 107, 1089–1097. Bowie, W.R., King, A.S., Werker, D.H., Isaac-Renton, J.L., Bell, A., Eng, S.B., Marion, S.A., 1997. Outbreak of toxoplasmosis associated with municipal drinking water. Lancet 350, 173–177. Boyer, K.M., Holfels, E., Roizen, N., Swisher, C., Mack, D., Remington, J., Withers, S., Meier, P., McLeod, R., 2005. Toxoplasmosis Study Group. Risk factors for Toxoplasma gondii infection in mothers of infants with congenital toxoplasmosis: implications for prenatal management and screening. American Journal of Obstetrics and Gynecology 192, 564–571. Burnett, A.J., Shortt, S.G., Isaac-Renton, J., King, A., Werker, D., Bowie, W.R., 1998. Multiple cases of acquired toxoplasmosis retinitis presenting in an outbreak. Ophthalmology 105, 1032–1037. Cavalcante, G.T., Aguiar, D.M., Camargo, L.M.A., Labruna, M.B., de Andrade, H.F., Meireles, L.R., Dubey, J.P., Thulliez, P., Dias, R.A., Gennari, S.M., 2006a. Seroprevalence of Toxoplasma gondii antibodies in humans from rural Western Amazon, Brazil. Journal of Parasitology 92, 647–649. Cavalcante, G.T., Aguiar, D.M., Chiebao, D., Dubey, J.P., Ruiz, V.L.A., Dias, R.A., Camargo, L.M.A., Labruna, M.B., Gennari, S.M., 2006b. Seroprevalence of Toxoplasma gondii antibodies in cats and pigs from rural western Amazon, Brazil. Journal of Parasitology 92, 863–864. Chandrawathani, P., Nurulaini, R., Zaini, C.M., Premmaalatha, B., Adnan, M., Jamnah, O., Khor, S.K., Khadijah, S., Lai, S.Z., Shaik, M.A.B., Seah, T.C., Zatil, S.A., 2008. Seroprevalence of Toxoplasma gondii antibodies in pigs, goats, cattle, dogs and cats in peninsular Malaysia. Tropical Biomedicine 25, 257–258. Cheadle, M.A., Spencer, J.A., Blackburn, B.L., 1999. Seroprevalences of Neospora caninum and Toxoplasma gondii in nondomestic felids from southern Africa. Journal of Zoo and Wildlife Medicine 30, 248–251. Chen, C.Y., 2001. The study of individuals having pet tend to Toxoplasma infection. Chinese Journal of Zoonoses 17, 76–77. Chen, D.X., Tan, J.Q., Hu, Y., Shen, H.X., Li, X.M., Huo, J., Liu, J.N., Zhang, Y.C., Cai, Y.Q., 2005. Epidemiological investigation of Toxoplasma gondii infection in cats and dogs in Guangzhou. Journal of Tropical Medicine 5, 639–641. Chong, L.H., Singh, M., Chua, S.B., Fong, W.E., 1993. Feline toxoplasmosis in Singapore. Singapore Veterinary Journal 17, 79–87. Conrad, P.A., Miller, M.A., Kreuder, C., James, E.R., Mazet, J., Dabritz, H., Jessup, D.A., Gulland, F., Grigg, M.E., 2005. Transmission of Toxoplasma: clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment. International Journal for Parasitology 35, 1155–1168. Cook, A.J., Gilbert, R.E., Buffolano, W., Zufferey, J., Petersen, E., Jenum, P.A., Foulon, W., Semprini, A.E., Dunn, D.T., 2000. Sources of Toxoplasma infection in pregnant women: European multicentre case-control study. European research network on congenital toxoplasmosis. BMJ 321, 142–147. D’Amore, E., Falcone, E., Busani, L., Tollis, M., 1997. A serological survey of feline immunodeficiency virus and Toxoplasma gondii in stray cats. Veterinary Research Communications 21, 355–359.

21

da Silva, A.V., Cutolo, A.A., Langoni, H., 2002. Comparação da reação de imunofluorescência indireta e do método de aglutinação direta na detecção de anticorpos anti-Toxoplasma em soros de ovinos, caprinos, caninos e felinos. Arquivos do Instituto Biológico (São Paulo) 69, 7–11. Dabritz, H.A., Gardner, I.A., Miller, M.A., Lappin, M.R., Atwill, E.R., Packham, A.E., Melli, A.C., Conrad, P.A., 2007a. Evaluation of two Toxoplasma gondii serologic tests used in a serosurvey of domestic cats in California. Journal of Parasitology 93, 806–816. Dabritz, H.A., Miller, M.A., Atwill, E.R., Gardner, I.A., Leutenegger, C.M., Melli, A.C., Conrad, P.A., 2007b. Detection of Toxoplasma gondii-like oocysts in cat feces and estimates of the environmental oocyst burden. Journal of the American Veterinary Medical Association 231, 1676–1684. Danner, R.M., Goltz, D.M., Hess, S.C., Banko, P.C., 2007. Evidence of feline immunodeficiency virus, feline leukemia virus, and Toxoplasma gondii in feral cats on Mauna Kea, Hawaii. Journal of Wildlife Diseases 43, 315–318. de Aluja, A.S., Aguilar, P., 1977. Estudio sobre la frecuencia del ooquiste de Toxoplasma gondii en el gato domestico del distrito federal. Gaceta Médica de Mexico 113, 455–459. de Camps, S., Dubey, J.P., Saville, W.J.A., 2008. Seroepidemiology of Toxoplasma gondii in zoo animals in selected zoos in the midwestern United States. Journal of Parasitology 94, 648–653. de Craeye, S., Francart, A., Chabauty, J., De Vriendt, V., Van Gucht, S., Leroux, I., Jongert, E., 2008. Prevalence of Toxoplasma gondii infection in Belgian house cats. Veterinary Parasitology 157, 128–132. de Moura, L., Bahia-Oliveira, L.M.G., Wada, M.Y., Jones, J.L., Tuboi, S.H., Carmo, E.H., Ramalho, W.M., Camargo, N.J., Trevisan, R., Graça, R.M.T., da Silva, A.J., Moura, I., Dubey, J.P., Garrett, D.O., 2006. Waterborne outbreak of toxoplasmosis, Brazil, from field to gene. Emerging Infectious Diseases 12, 326–329. DeFeo, M.L., Dubey, J.P., Mather, T.N., Rhodes, R.C., 2002. Epidemiologic investigation of seroprevalence of antibodies to Toxoplasma gondii in cats and rodents. American Journal of Veterinary Research 63, 1714–1717. Demar, M., Ajzenberg, D., Serrurier, B., Dardé, M.L., Carme, B., 2008. Case report: atypical Toxoplasma gondii strain from a free-living jaguar (Panthera onca) in French Guiana. American Journal of Tropical Medicine and Hygiene 78, 195–197. Dorny, P., Fransen, A.J., 1989. Toxoplasmosis in a Siberian tiger (Panthera tigris altaica). Veterinary Record 125, 647. Dorny, P., Speybroeck, N., Verstraete, S., Baeke, M., de Becker, A., Berkvens, D., Vercruysse, J., 2002. Serological survey of Toxoplasma gondii, feline immunodeficiency virus and feline leukaemia virus in urban stray cats in Belgium. Veterinary Record 151, 626–629. Dubey, J.P., Miller, N.L., Frenkel, J.K., 1970. Characterization of the new fecal form of Toxoplasma gondii. Journal of Parasitology 56, 447–456. Dubey, J.P., Frenkel, J.K., 1972. Cyst-induced toxoplasmosis in cats. Journal of Protozoology 19, 155–177. Dubey, J.P., 1976. Reshedding of Toxoplasma oocysts by chronically infected cats. Nature 262, 213–214. Dubey, J.P., 1977. Toxoplasma, Hammondia, Besnoitia, Sarcocystis, and other tissue cyst-forming coccidia of man and animals. In: Kreier, J.P. (Ed.), Parasitic Protozoa, vol. 3. Academic Press, New York, pp. 101–237. Dubey, J.P., Miller, S., Powell, E.C., Anderson, W.R., 1986. Epizootiologic investigations on a sheep farm with Toxoplasma gondii-induced abortions. Journal of the American Veterinary Medical Association 188, 155–158. Dubey, J.P., Beattie, C.P., 1988. Toxoplasmosis of Animals and Man. CRC Press, Boca Raton, FL. pp. 1–220. Dubey, J.P., Gendron-Fitzpatrick, A.P., Lenhard, A.L., Bowman, D., 1988. Fatal toxoplasmosis and enteroepithelial stages of Toxoplasma gondii in a Pallas cat (Felis manul). Journal of Protozoology 35, 528–530. Dubey, J.P., Thulliez, P., 1989. Serologic diagnosis of toxoplasmosis in cats fed Toxoplasma gondii tissue cysts. Journal of the American Veterinary Medical Association 194, 1297–1299. Dubey, J.P., 1995. Duration of immunity to shedding of Toxoplasma gondii oocysts by cats. Journal of Parasitology 81, 410–415. Dubey, J.P., Weigel, R.M., Siegel, A.M., Thulliez, P., Kitron, U.D., Mitchell, M.A., Mannelli, A., Mateus-Pinilla, N.E., Shen, S.K., Kwok, O.C.H., Todd, K.S., 1995. Sources and reservoirs of Toxoplasma gondii infection on 47 swine farms in Illinois. Journal of Parasitology 81, 723–729. Dubey, J.P., Lindsay, D.S., Speer, C.A., 1998. Structure of Toxoplasma gondii tachyzoites, bradyzoites and sporozoites, and biology and development of tissue cysts. Clinical Microbiology Reviews 11, 267–299. Dubey, J.P., 1998. Toxoplasma gondii oocyst survival under defined temperatures. Journal of Parasitology 84, 862–865. Dubey, J.P., 2001. Oocyst shedding by cats fed isolated bradyzoites and comparison of infectivity of bradyzoites of the VEG strain Toxoplasma gondii to cats and mice. Journal of Parasitology 87, 215–219. Dubey, J.P., Saville, W.J.A., Stanek, J.F., Reed, S.M., 2002. Prevalence of Toxoplasma gondii antibodies in domestic cats from rural Ohio. Journal of Parasitology 88, 802–803. Dubey, J.P., 2004. Toxoplasmosis – a waterborne zoonosis. Veterinary Parasitology 126, 57–72. Dubey, J.P., Graham, D.H., de Young, R.W., Dahl, E., Eberhard, M.L., Nace, E.K., Won, K., Bishop, H., Punkosdy, G., Sreekumar, C., Vianna, M.C.B., Shen, S.K., Kwok, O.C.H., Sumners, J.A., Demarais, S., Humphreys, J.G., Lehmann, T., 2004a. Molecular and biologic characteristics of Toxoplasma gondii isolates from wildlife in the United States. Journal of Parasitology 90, 67–71. Dubey, J.P., Navarro, I.T., Sreekumar, C., Dahl, E., Freire, R.L., Kawabata, H.H., Vianna, M.C.B., Kwok, O.C.H., Shen, S.K., Thulliez, P., Lehmann, T., 2004b. Toxoplasma

22

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25

gondii infections in cats from Paraná, Brazil: seroprevalence, tissue distribution, and biologic and genetic characterization of isolates. Journal of Parasitology 90, 721–726. Dubey, J.P., Su, C., Cortés, J.A., Sundar, N., Gomez-Marin, J.E., Polo, L.J., Zambrano, L., Mora, L.E., Lora, F., Jimenez, J., Kwok, O.C.H., Shen, S.K., Zhang, X., Nieto, A., Thulliez, P., 2006. Prevalence of Toxoplasma gondii in cats from Colombia, South America and genetic characterization of T. gondii isolates. Veterinary Parasitology 141, 42–47. Dubey, J.P., Zhu, X.Q., Sundar, N., Zhang, H., Kwok, O.C.H., Su, C., 2007a. Genetic and biologic characterization of Toxoplasma gondii isolates of cats from China. Veterinary Parasitology 145, 352–356. Dubey, J.P., López-Torres, H.Y., Sundar, N., Velmurugan, G.V., Ajzenberg, D., Kwok, O.C.H., Hill, R., Dardé, M.L., Su, C., 2007b. Mouse-virulent Toxoplasma gondii isolated from feral cats on Mona Island, Puerto Rico. Journal of Parasitology 93, 1365–1369. Dubey, J.P., Jones, J.L., 2008. Toxoplasma gondii infection in humans and animals in the United States. International Journal for Parasitology 38, 1257–1278. Dubey, J.P., Velmurugan, G.V., Alvarado-Esquivel, C., Alvarado-Esquivel, D., Rodgríguez-Peña, S., Martínez-García, S., González-Herrera, A., Ferreira, L.R., Kwok, O.C.H., Su, C., 2009a. Isolation of Toxoplasma gondii from animals in Durango, Mexico. Journal of Parasitology 95, 319–322. Dubey, J.P., Bhatia, C.R., Lappin, M.R., Ferreira, L.R., Thorn, A., Kwok, O.C.H., 2009b. Seroprevalence of Toxoplasma gondii and Bartonella spp. antibodies in cats from Pennsylvania. Journal of Parasitology. Dubey, J.P., 2009a. History of the discovery of the life cycle of Toxoplasma gondii. International Journal of Parasitology. Dubey, J.P., 2009b. Toxoplasmosis of Animals and Humans, second ed. CRC Press, Boca Ranton. Florida. Dubey, J.P., Lappin, M.R., Kwok, O.C.H., Mofya, S., Chikweto, A., Baffa, A., Doherty, D., Shakier, J., Macpherson, C.L., Sharma, R.N., 2009c. Seroprevalence of Toxoplasma gondii and concurrent Bartonella spp., feline immunodeficiency virus, and feline leukemia infections in cats from Grenada, West Indies. Journal of Parasitology, in press. Dubey, J.P., Moura, L., Majumdar, D., Sundar, N., Velmurugan, G.V., Kwok, O.C.H., Kelly, P., Krecek, R.C., Su, C., 2009d. Isolation and characterization of viable Toxoplasma gondii isolates revealed possible high frequency of mixed infection in feral cats (Felis domesticus) from St Kitts, West Indies. Parasitology 136, 589–594. Dumètre, A., Dardé, M.L., 2003. How to detect Toxoplasma gondii oocysts in environmental samples? FEMS Microbiology Reviews 27, 651–661. Dumètre, A., Dardé, M.L., 2005. Immunomagnetic separation of Toxoplasma gondii oocysts using a monoclonal antibody directed against the oocyst wall. Journal of Microbiological Methods 61, 209–217. Dumètre, A., Dardé, M.L., 2007. Detection of Toxoplasma gondii in water by an immunomagnetic separation method targeting the sporocysts. Parasitology Research 101, 989–996. Dumètre, A., Le Bras, C., Baffet, M., Meneceur, P., Dubey, J.P., Derouin, F., Duguet, J.P., Joyeux, M., Moulin, L., 2008. Effects of ozone and ultraviolet radiation treatments on the infectivity of Toxoplasma gondii oocysts. Veterinary Parasitology 153, 209–213. Edelhofer, R., Aspöck, H., 1996. Infektionsquellen und Infektionswege aus der Sicht des Toxoplasmose-Screenings der Schwangeren in Österreich. Mitteilungen Österreichischen Gesellschaft für Tropenmedizin und Parasitolologie 18, 59–70. Eng, S.B., Werker, D.H., King, A.S., Marion, S.A., Bell, A., Issac-Renton, J.L., Irwin, G.S., Bowie, W.R., 1999. Computer-generated dot maps as an epidemiologic tool: investigating an outbreak of toxoplasmosis. Emerging Infectious Diseases 5, 815–819. Epe, C., Ising-Volmer, S., Stoye, M., 1993. Ergebnisse parasitologischer Kotuntersuchungen von Equiden, Hunden, Katzen un Igeln der Jahre 1984– 1991. Deutsche Tierärztliche Wochenschrift 100, 426–428. Epe, C., Coati, N., Schnieder, T., 2004. Ergebnisse parasitologischer Kotuntersuchungen von Pferden, Wiederkäuern, Schweinen, Hunden, Katzen, Igeln un Kaninchen in den Jahren 1998–2002. Deutsche Tierärztliche Wochenschrift 111, 243–247. Ertug, S., Okyay, P., Turkmen, M., Yuksel, H., 2005. Seroprevalence and risk factors for Toxoplasma infection among pregnant women in Aydin Province, Turkey. BMC Public Health 5, 66. Fernández, F., Ouvina, G., Clot, E., Fernandes Guido, R., Codoni, C., 1995. Prevalence of Toxoplasma gondii antibodies in cats in the western part of Great Buenos Aires, Argentina, 1993. Veterinary Parasitology 59, 75–79. Fiorello, C.V., Robbins, R.G., Maffei, L., Wade, S.E., 2006. Parasites of free-ranging small canids and felids in the Bolivian Chaco. Journal of Zoo and Wildlife Medicine 37, 130–134. Frenkel, J.K., Dubey, J.P., Miller, N.L., 1970. Toxoplasma gondii in cats: fecal stages identified as coccidian oocysts. Science 167, 893–896. Frenkel, J.K., Dubey, J.P., 1972. Toxoplasmosis and its prevention in cats and man. Journal of Infectious Diseases 126, 664–673. Frenkel, J.K., Dubey, J.P., 1973. Effects of freezing on the viability of Toxoplasma oocysts. Journal of Parasitology 59, 587–588. Frenkel, J.K., Ruiz, A., Chinchilla, M., 1975. Soil survival of Toxoplasma oocysts in Kansas and Costa Rica. American Journal of Tropical Medicine and Hygiene 24, 439–443. Frenkel, J.K., Dubey, J.P., 1975. Hammondia hammondi gen. nov., sp. nov., from domestic cats, a new coccidian related to Toxoplasma and Sarcocystis. Zeitschrift für Parasitenkunde 46, 3–12. Frenkel, J.K., Hassanein, K.M., Hassanein, R.S., Brown, E., Thulliez, P., QuinteroNunez, R., 1995. Transmission of Toxoplasma gondii in Panama City, Panama: a

five-year prospective cohort study of children, cats, rodents, birds, and soil. American Journal of Tropical Medicine and Hygiene 53, 458–468. Fu, B., Zhao, Y.Q., Yang, B.J., Han, G.D., Shao, Q.F., Li, J.M., Zhang, Y.L., Wang, Z.M., Sun, D.J., Yu, G.Z., Wang, X.J., 1995. Epidemiological investigation on toxoplasmosis in Shandong province. Chinese Journal of Parasitic Disease Control 8, 205–207. Fujinami, F., Tanaka, H., Ohshima, S., 1983. Prevalence of protozoan and helminth parasites in cats for experimental use obtained from Kanto Area, Japan. Experimental Animals 32, 133–137. Furuya, H., Nogami, S., Inoue, I., Takahashi, D., Mizusawa, H., Tohyama, K., 1993. Seroepidemiological survey on Toxoplasma gondii infection in kittens. Japanese Journal of Parasitology 42, 388–391. Galván Ramírez, M.L., Sánchez Vargas, G., Vielma Sandoval, M., Soto Mancilla, J.L., 1999. Presence of anti-Toxoplasma antibodies in humans and their cats in the urban zone of Guadalajara. Revista da Sociedade Brasileira de Medicina Tropical 32, 483–488. Garcia, J.L., Navarro, I.T., Ogawa, L., de Oliveira, R.C., 1999. Soroepidemiologia da toxoplasmose em gatos e cães de propriedades rurais do município de Jaguapitã, Estado do Paraná, Brasil. Ciência Rural 29, 99–104. García-Márquez, L.J., Gutiérrez-Díaz, M.A., Correa, D., Luna-Pastén, H., Palma, J.M., 2007. Prevalence of Toxoplasma gondii antibodies and the relation to risk factors in cats of Colima, Mexico. Journal of Parasitology 93, 1527–1528. Gauss, C.B.L., Almería, S., Ortuño, A., Garcia, F., Dubey, J.P., 2003. Seroprevalence of Toxoplasma gondii antibodies in domestic cats from Barcelona, Spain. Journal of Parasitology 89, 1067–1068. Guevara Collazo, G.D., Torres Montoya, J.T., Waissman, J.C., 1990. Situación de los ooquistes de Toxoplasma gondii en heces de gatos del Distrito Federal, México. Veterinaria México 21, 45–48. Haddadzadeh, H.R., Khazraiinia, P., Aslani, M., Rezaeian, M., Jamshidi, S., Taheri, M., Bahonar, A., 2006. Seroprevalence of Toxoplasma gondii infection in stray and household cats in Tehran. Veterinary Parasitology 138, 211–216. Hall, S.M., Pandit, A., Golwilkar, A., Williams, T.S., 1999. How do Jains get toxoplasma infection? Lancet 354, 486–487. Hecking-Veltman, J., Tenter, A.M., Daugschies, A., 2001. Studien zur parasitenfauna bei streunenden katzen im raum mönchengladbach. Der Praktische Tierarzt 82, 563–569. Heukelbach, J., Meyer-Cirkel, V., Moura, R.C.S., Gomide, M., Queiroz, J.A.N., Saweljew, P., Liesenfeld, O., 2007. Waterborne toxoplasmosis, northeastern Brazil. Emerging Infectious Diseases 13, 287–289. Hill, D.E., Sreekumar, C., Dubey, J.P., 2002. Toxoplasma gondii. In: Friend, M., Brand, C.J. (Eds.), Field Manual of Wildlife Zoonosis. USGS National Wildlife Health Center, Madison, WI, pp. 357–382. Hill, R.E., Zimmerman, J.J., Willis, R.W., Patton, S., Clark, W.R., 1998. Seroprevalence of antibodies against Toxoplasma gondii in free-ranging mammals in Iowa. Journal of Wildlife Diseases 34, 811–815. Hill, S.L., Cheney, J.M., Taton-Allen, G.F., Reif, J.S., Bruns, C., Lappin, M.R., 2000. Prevalence of enteric zoonotic organisms in cats. Journal of the American Veterinary Medical Association 216, 687–692. Holland, G.N., 2003. Ocular toxoplasmosis: a global reassessment. Part I: Epidemiology and course of disease. American Journal of Ophthalmology 136, 973–988. Hooshyar, H., Rostamkhani, P., Talari, S., Arbabi, M., 2007. Toxoplasma gondii infection in stray cats. Iranian Journal of Parasitology 2, 18–22. Hornok, S., Edelhofer, R., Joachim, A., Farkas, R., Berta, K., Repasi, A., Lakatos, B., 2008. Seroprevalence of Toxoplasma gondii and Neospora caninum infection of cats in Hungary. Acta Veterinaria Hungarica 56, 81–88. Hove, T., Mukaratirwa, S., 2005. Seroprevalence of Toxoplasma gondii in farm-reared ostriches and wild game species from Zimbabwe. Acta Tropica 94, 49–53. Huang, X., Kimbita, E.N., Battur, B., Miyazawa, T., Fukumoto, S., Mishima, M., Makala, L.H., Suzuki, H., Sugimoto, C., Nagasawa, H., Fujisaki, K., Mikami, T., Igarashi, I., 2002. Development and evaluation of an enzyme-linked immunosorbent assay with recombinant SAG2 for diagnosis of Toxoplasma gondii infection in cats. Journal of Parasitology 88, 804–807. Huang, X., Xuan, X., Hirata, H., Yokoyama, N., Xu, L., Suzuki, N., Igarashi, I., 2004. Rapid immunochromatographic test using recombinant SAG2 for detection of antibodies against Toxoplasma gondii in cats. Journal of Clinical Microbiology 42, 351–353. Hung, C.C., Fan, C.K., Su, K.E., Sung, F.C., Chiou, H.Y., Gil, V., Ferreira, M.C.R., de Carvalho, J.M., Cruz, C., Lin, Y.K., Tseng, L.F., Sao, K.Y., Chang, W.C., Lan, H.S., Chou, S.H., 2007. Serological screening and toxoplasmosis exposure factors among pregnant women in the Democratic Republic of Sao Tome and Principe. Transactions of the Royal Society of Tropical Medicine and Hygiene 101, 134–139. Hutchison, W.M., 1967. The nematode transmission of Toxoplasma gondii. Transactions of the Royal Society of Tropical Medicine and Hygiene 61, 80– 89. Inci, A., Budak, C., Dinçer, S., 1996. Investigation of anti-Toxoplasma gondii in cats using Sabin–Feldman dye test in Ankara. Türkiye Parazitoloji Dergisi 20, 407– 411. Isaac-Renton, J., Bowie, W.R., King, A., Irwin, G.S., Ong, C.S., Fung, C.P., Shokeir, M.O., Dubey, J.P., 1998. Detection of Toxoplasma gondii oocysts in drinking water. Applied and Environmental Microbiology 64, 2278–2280. Ito, S., Tsunoda, K., Nishikawa, H., Matsui, T., 1974. Small type of Isospora bigemina. Isolation from naturally infected cats and relations with Toxoplasma oocyst. National Institute of Animal Health Quarterly 14, 137–144. Ito, S., Tsunoda, K., Shimada, K., Taki, T., Matsui, T., 1975. Disinfectant effects of several chemicals against Toxoplasma oocysts. Japanese Journal of Veterinary Science 37, 229–234.

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25 Janitschke, K., Werner, H., 1972. Untersuchungen uber die Wirtsspezifitat des geschlechtlichen Entwicklungszyklus von Toxoplasma gondii. Zeitschrift für Parasitenkunde 39, 247–254. Jewell, M.L., Frenkel, J.K., Johnson, K.M., Reed, V., Ruiz, A., 1972. Development of Toxoplasma oocysts in neotropical felidae. American Journal of Tropical Medicine and Hygiene 21, 512–517. Jiang, J., Alderisio, K.A., Singh, A., Xiao, L., 2005. Development of procedures for direct extraction of cryptosporidium DNA from water concentrates and for relief of PCR inhibitors. Applied and Environmental Microbiology 71, 1135– 1141. Jittapalapong, S., Nimsupan, B., Pinyopanuwat, N., Chimnoi, W., Kabeya, H., Maruyama, S., 2007. Seroprevalence of Toxoplasma gondii antibodies in stray cats and dogs in the Bangkok metropolitan area, Thailand. Veterinary Parasitology 145, 138–141. Jones, C.D., Okhravi, N., Adamson, P., Tasker, S., Lightman, S., 2000. Comparison of PCR detection methods for B1, P30, and 18s rDNA genes of T. gondii in aqueous humor. Investigative Ophthalmology and Visual Science 41, 634–644. Jones, J.L., Lopez, B., Mury, M.A., Wilson, M., Klein, R., Luby, S., Maguire, J.H., 2005. Toxoplasma gondii infection in rural Guatemalan children. American Journal of Tropical Medicine and Hygiene 72, 295–300. Karatepe, B., Babur, C., Karatepe, M., Kilic, S., Dundar, B., 2008. Prevalence of Toxoplasma gondii and intestinal parasites in stray cats from Nigde, Turkey. Italian Journal of Animal Science 7, 113–118. Kenny, D.E., Lappin, M.R., Knightly, F., Baier, J., Brewer, M., Getzy, D.M., 2002. Toxoplasmosis in Pallas’ cats (Otocolobus Felis manul) at the Denver Zoological Gardens. Journal of Zoo and Wildlife Medicine 33, 131–138. Ketz-Riley, C.J., Ritchey, J.W., Hoover, J.P., Johnson, C.M., Barrie, M.T., 2003. Immunodeficiency associated with multiple concurrent infections in captive Pallas’ cats (Otocolobus manul). Journal of Zoo and Wildlife Medicine 34, 239– 245. Kikuchi, Y., Chomel, B.B., Kasten, R.W., Martenson, J.S., Swift, P.K., O’Brien, S.J., 2004. Seroprevalence of Toxoplasma gondii in American free-ranging or captive pumas (Felis concolor) and bobcats (Lynx rufus). Veterinary Parasitology 120, 1–9. Kim, H.Y., Kim, Y.A., Kang, S., Lee, H.S., Rhie, H.G., Ahn, H.J., Nam, H.W., Lee, S.E., 2008. Prevalence of Toxoplasma gondii in stray cats of Gyeonggi-do, Korea. Korean Journal of Parasitology 46, 199–201. Kimbita, E.N., Xuan, X., Huang, X., Miyazawa, T., Fukumoto, S., Mishima, M., Suzuki, H., Sugimoto, C., Nagasawa, H., Fujisaki, K., Suzuki, N., Mikami, T., Igarashi, I., 2001. Serodiagnosis of Toxoplasma gondii infection in cats by enzyme-linked immunosorbent assay using recombinant SAG1. Veterinary Parasitology 102, 35–44. Knaus, B.U., Fehler, K., 1989. Toxoplasma gondii-Infektionen und Oozystenausscheidung bei Hauskatzen und ihre Bedeutung für die Epidemiologie und Epizootiologie der Toxoplasmose. Angewandte Parastiologie 30, 155–160. Kourenti, C., Karanis, P., 2004. Development of a sensitive polymerase chain reaction method for the detection of Toxoplasma gondii in water. Water Science and Technology 50, 287–291. Kourenti, C., Karanis, P., 2006. Evaluation and applicability of a purification method coupled with nested PCR for the detection of Toxoplasma oocysts in water. Letters in Applied Microbiology 43, 475–481. Kuticic, V., Wikerhauser, T., 1993. Effects of three disinfectants on the viability of Toxoplasma gondii oocysts. Periodicum Biologorum 95, 345–346. Labelle, P., Dubey, J.P., Mikaelian, I., Blanchette, N., Lafond, R., St-Onge, S., Martineau, D., 2001. Seroprevalence of antibodies to Toxoplasma gondii in lynx (Lynx canadensis) and bobcats (Lynx rufus) from Québec, Canada. Journal of Parasitology 87, 1194–1196. Langham, N.P.E., Charleston, W.A.G., 1990. An investigation of the potential for spread of Sarcocystis spp. and other parasites by feral cats. New Zealand Journal of Agriculture Research 33, 429–435. Lappin, M.R., Greene, C.E., Prestwood, A.K., Dawe, D.L., Marks, A., 1989. Prevalence of Toxoplasma gondii infection in cats in Georgia using enzyme-linked immunosorbent assays for IgM, IgG, and antigens. Veterinary Parasitology 33, 225–230. Lappin, M.R., Jacobson, E.R., Kollias, G.V., Powell, C.C., Stover, J., 1991. Comparison of serologic assays for the diagnosis of toxoplasmosis in nondomestic felids. Journal of Zoo and Wildlife Medicine 22, 169–174. Lappin, M.R., Marks, A., Greene, C.E., Collins, J.K., Carman, J., Reif, J.S., Powell, C.C., 1992. Serologic prevalence of selected infectious diseases in cats with uveitis. Journal of the American Veterinary Medical Association 201, 1005–1009. Lee, J.Y., Lee, S.E., Lee, E.G., Song, K.H., 2008. Nested PCR-based detection of Toxoplasma gondii in German shepherd dogs and stray cats in South Korea. Research in Veterinary Science 85, 125–127. Levy, J.K., Crawford, P.C., Lappin, M.R., Dubovi, E.J., Levy, M.G., Alleman, R., Tucker, S.J., Clifford, E.L., 2008. Infectious diseases of dogs and cats on Isabela, Island, Galapagos. Journal of Veterinary Internal Medicine 22, 60–65. Lickey, A.L.A., Kennedy, M., Patton, S., Ramsay, E.C., 2005. Serologic survey of domestic felids in the Petén region of Guatemala. Journal of Zoo and Wildlife Medicine 36, 121–123. Lin, D.S., Lai, S.S., Bowman, D.D., Jacobson, R.H., Barr, M.C., Giovengo, S.L., 1990. Feline immunodeficiency virus, feline leukemia virus, Toxoplasma gondii, and intestinal parasitic infections in Taiwanese cats. British Veterinary Journal 146, 468–475. Lin, Y.L., Liao, Y.S., Liao, L.R., Chen, F.N., Kuo, H.M., He, S., 2008. Seroprevalence and sources of Toxoplasma gondii infection among indigenous and immigrant pregnant women in Taiwan. Parasitology Research 103, 67–74.

23

Lindsay, D.S., Collins, M.V., Mitchell, S.M., Wetch, C.N., Rosypal, A.C., Flick, G.J., Zajac, A.M., Lindquist, A., Dubey, J.P., 2004. Survival of Toxoplasma gondii oocysts in eastern oysters (Crassostrea virginica). Journal of Parasitology 90, 1054–1057. Ljungström, B.L., Lundén, A., Höglund, J., Zakrisson, G., 1994. Evaluation of a direct agglutination test for detection of antibodies against Toxoplasma gondii in cat, pig and sheep sera. Acta Veterinaria Scandinavica 35, 213–216. Londoño, M.T.M., Chamorro, N.L., Infante, M.S., Carlos, J., Osorio, C., 1998. Infeccion por Toxoplasma gondii en gatos de dos barrios del sur de Armenia y su importancia en la toxoplasmosis humana. Colbaquin Actualidades Clínicas y Biotecnológicas 12, 18–23. Lopes, A.P., Cardoso, L., Rodrigues, M., 2008. Serological survey of Toxoplasma gondii infection in domestic cats from northeastern Portugal. Veterinary Parasitology 155, 184–189. Lopez, A., Dietz, V.J., Wilson, M., Navin, T.R., Jones, J.L., 2000. Preventing congenital toxoplasmosis. Morbidity and Mortality Weekly Report 49, 59–75. López-Castillo, C.A., Díaz-Ramírez, J., Gómez-Marín, J.E., 2005. Factores de riesgo en mujeres embarazadas, infectadas por Toxoplasma gondii en Armenia-Colombia. Revista de Salud Pública 7, 180–190. Lu, Q., Huang, A.M., Yang, Y.M., Yang, H.Z., Yang, J.H., 1997. Serological investigation of Toxoplasma gondii infection in pet cats in Shanghai. Chinese Journal of Zoonoses 13, 69–78. Lucas, S.R.R., Hagiwara, M.K., Loureiro, V.d.S., Ikesaki, J.Y.H., Birgel, E.H., 1999. Toxoplasma gondii infection in Brazilian domestic outpatient cats. Revista do Instituto de Medicina Tropical de São Paulo 41, 221–224. Luft, B.J., Naot, Y., Araujo, F.G., Stinson, E.B., Remington, J.S., 1983. Primary and reactivated Toxoplasma infection in patients with cardiac transplants – clinical spectrum and problems in diagnosis in a defined population. Annals of Internal Medicine 99, 27–31. Luft, B.J., Brooks, R.G., Conley, F.K., McCabe, R.E., Remington, J.S., 1984. Toxoplasmic encephalitis in patients with acquired immune deficiency syndrome. Journal of the American Medical Association 252, 913–917. Lukešová, D., Literák, I., 1998. Shedding of Toxoplasma gondii oocysts by Felidae in zoos in the Czech Republic. Veterinary Parasitology 74, 1–7. Luria, B.J., Levy, J.K., Lappin, M.R., Breitschwerdt, E.B., Legendre, A.M., Hernandez, J.A., Gorman, S.P., Lee, I.T., 2004. Prevalence of infectious diseases in feral cats in Northern Florida. Journal of Feline Medicine Surgery 6, 287–296. Marchiondo, A.A., Duszynski, D.W., Maupin, G.O., 1976. Prevalence of antibodies to Toxoplasma gondii in wild and domestic animals of New Mexico, Arizona and Colorado. Journal of Wildlife Diseases 12, 226–232. Martínez Sáchez, R., Machín Sánchez, R., Fachado Carvajales, A., Pividal Grana, J., Cruz de la Paz, R., Suárez Hernández, M., 1991. Algunos resultados sobre una encuesta de Toxoplasma. Investigación Clíninica 32, 13–26. Maruyama, S., Hiraga, S., Yokoyama, E., Naoi, M., Tsuruoka, Y., Ogura, Y., Tamura, K., Namba, S., Kameyama, Y., Nakamura, S., Katsube, Y., 1998. Seroprevalence of Bartonella henselae and Toxoplasma gondii infections among pet cats in Kanagawa and Saitama Prefectures. Journal of Veterinary Medical Science 60, 997–1000. Maruyama, S., Kabeya, H., Nakao, R., Tanaka, S., Sakai, T., Xuan, X., Katsube, Y., Mikami, T., 2003. Seroprevalence of Bartonella henselae, Toxoplasma gondii, FIV and FeLV infections in domestic cats in Japan. Microbiology and Immunology 47, 147–153. Meireles, L.R., Galisteo, A.J., Pompeu, E., Andrade, H.F., 2004. Toxoplasma gondii spreading in an urban area evaluated by seroprevalence in free-living cats and dogs. Tropical Medicine and International Health 9, 876–881. Mendes-de-Almeida, F., Labarthe, N., Guerrero, J., Faria, M.C.F., Branco, A.S., Pereira, C.D., Barreira, J.D., Pereira, M.J.S., 2007. Follow-up of the health conditions of an urban colony of free-roaming cats (Felis catus Linnaeus, 1758) in the city of Rio de Janeiro, Brazil. Veterinary Parasitology 147, 9–15. Michalski, M., Platt-Samoraj, A., 2004. Prevalence of Toxoplasma gondii infection in cats from Olsztyn city. Wiadomosci Parazytologicze 50, 303–305. Millán, J., Candela, M.G., Palomares, F., Cubero, M.J., Rodríguez, A., Barral, M., de la Fuente, J., Almería, S., León-Vizcaíno, L., 2009. Disease threats to the endangered Ilerian lynx (Lynx pardinus). Veterinary Journal 182, 114–124. Miller, M.A., Miller, W.A., Conrad, P.A., James, E.R., Melli, A.C., Leutenegger, C.M., Dabritz, H.A., Packham, A.E., Paradies, D., Harris, M., Ames, J., Jessup, D.A., Worcester, K., Grigg, M.E., 2008. Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: new linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters. International Journal for Parasitology 38, 1319–1328. Miller, N.L., Frenkel, J.K., Dubey, J.P., 1972. Oral infections with Toxoplasma cysts and oocysts in felines, other mammals, and in birds. Journal of Parasitology 58, 928– 937. Milstein, T.C., Goldsmid, J.M., 1997. Parasites of feral cats from southern Tasmania and their potential significance. Australian Veterinary Journal 75, 218–219. Miró, G., Montoya, A., Jiménez, S., Frisuelos, C., Mateo, M., Fuentes, I., 2004. Prevalence of antibodies to Toxoplasma gondii and intestinal parasites in stray, farm and household cats in Spain. Veterinary Parasitology 126, 249–255. Montoya, A., Miró, G., Mateo, M., Ramirez, C., Fuentes, I., 2008. Molecular characterization of Toxoplasma gondii isolates from cats from Spain. Journal of Parasitology 94, 1044–1046. Moura, L., Kelly, P., Krecek, R.C., Dubey, J.P., 2007. Seroprevalence of Toxoplasma gondii in cats from St. Kitts, West Indies. Journal of Parasitology 93, 952–953. Mucker, E.M., Dubey, J.P., Lovallo, M.J., Humphreys, J.G., 2006. Seroprevalence of antibodies to Toxoplasma gondii in the Pennsylvania bobcat (Lynx rufus rufus). Journal of Wildlife Diseases 42, 188–191.

24

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25

Natale, A., Frangipane di Regalbono, A., Zanellato, G., Cavalletto, M., Danesi, P., Capelli, G., Pietrobelli, M., 2007. Parasitological survey on stray cat colonies from the Veneto region. Veterinary Research Communications 31 (Suppl. 1), 241–244. Netto, E.G., Munhoz, A.D., Albuquerque, G.R., Lopes, C.W.G., Ferreira, A.M.R., 2003. Ocorrência de gatos soropositivos para Toxoplasma gondii Nicolle e Manceaux, 1909 (Apicomplexa: Toxoplasmatinae) na Cidade de Niterói, Rio de Janeiro. Revista Brasileira de Parasitologia Veterinária 12, 145–149. Nogami, S., Moritomo, T., Kamata, H., Tamura, Y., Sakai, T., Nakagaki, K., Motoyoshi, S., 1998. Seroprevalence against Toxoplasma gondii in domiciled cats in Japan. Journal of Veterinary Medical Science 60, 1001–1004. Nutter, F.B., Dubey, J.P., Levine, J.F., Breitschwerdt, E.B., Ford, R.B., Stoskopf, M.K., 2004. Seroprevalence of antibodies against Bartonellla henselae and Toxoplasma gondii and fecal shedding of Cryptosporidium spp., and Toxocara cati in feral and pet domestic cats. Journal of the American Veterinary Medical Association 225, 1394–1398. Ocholi, R.A., Kalejaiye, J.O., Okewole, P.A., 1989. Acute disseminated toxoplasmosis in two captive lions (Panthera leo) in Nigeria. Veterinary Record 124, 515–516. Oikawa, H., Omata, Y., Kanda, M., Mikazuki, K., Yano, K., Nakabayashi, T., 1990. Survey on Toxoplasma infection in stray cats in western area of Japan during a two-year period. Japanese Journal of Parasitology 39, 462–467. Ondrejka, R., Ondrejkova, A., Suli, J., Benisek, Z., Posivakova, S., Svrcek, S., 2007. AIDes, leukaemias es toxoplasmosisos fertozesek javanytani es szerologiai felmerese a hazimacskak szlovakiai populaciojaban. Magyar Allatorvosok Lapja 129, 628–631. Ovalle, F., Garcia, A., Thibauth, J., Lorca, M., 2000. Frecuencia de anticuerpos antiToxoplasma gondii en gatos de la ciudad de Valdivia, Chile. Boletin Chileno de Parasitologia 55, 94–99. Ozkan, A.T., Celebi, B., Babur, C., Lucio-Forster, A., Bowman, D.D., Lindsay, D.S., 2008. Investigation of anti-Toxoplasma gondii antibodies in cats of the Ankara region of Turkey using the Sabin–Feldman dye test and an indirect fluorescent antibody test. Journal of Parasitology 94, 817–820. Palanisamy, M., Madhavan, B., Balasundaram, M.B., Andavar, R., Venkatapathy, N., 2006. Outbreak of ocular toxoplasmosis in Coimbatore, India. Indian Journal of Ophthalmology 54, 129–131. Pas, A., Dubey, J.P., 2008a. Seroprevalence of antibodies to Toxoplasma gondii in Gordon’s wild cat (Felis silvestris gordoni) in the Middle East. Journal of Parasitology 94, 1169. Pas, A., Dubey, J.P., 2008b. Fatal toxoplasmosis in sand cats (Felis margarita). Journal of Zoo Wildlife Medicine 39, 362–369. Patton, S., Rabinowitz, A., Randolph, S., Johnson, S.S., 1986. A coprological survey of parasites of wild neotropical felidae. Journal of Parasitology 72, 517–520. Paul-Murphy, J., Work, T., Hunter, D., McFie, E., Fjelline, D., 1994. Serologic survey and serum biochemical reference ranges of the free-ranging mountain lion (Felis concolor) in California. Journal of Wildlife Diseases 30, 205–215. Paul, M., 1998. Potencjalne zrodla zarazenia Toxoplasma gondii w przypadkach badanuch w krotkim czasie po zarazeniu. Przeglad Epidemiologiczny 52, 447– 454. Pena, H.F.J., Soares, R.M., Amaku, M., Dubey, J.P., Gennari, S.M., 2006. Toxoplasma gondii infection in cats from São Paulo state, Brazil: seroprevalence, oocyst shedding, isolation in mice, and biologic and molecular characterization. Research in Veterinary Science 81, 58–67. Penzhorn, B.L., Stylianides, E., van Vuuren, M., Alexander, K., Meltzer, D.G.A., Mukarati, N., 2002. Seroprevalence of Toxoplasma gondii in free-ranging lion and leopard populations in southern Africa. South African Journal of Wildlife Research 32, 163–165. Philippa, J.D.W., Leighton, F.A., Daoust, P.Y., Nielsen, O., Pagliarulo, M., Schwantje, H., Shury, T., van Herwijnen, R., Martina, B.E.E., Kuiken, T., van de Bildt, M.W.G., Osterhaus, A.D.M.E., 2004. Antibodies to selected pathogens in free-ranging terrestrial carnivores and marine mammals in Canada. Veterinary Record 155, 135–140. Pizzi, H.L., Rico, C.M., Pessat, O.A.N., 1978. Hallazgo del ciclo ontogenico selvatico del Toxoplasma gondii en felidos salvajes (Oncifelis geofroyi, Felis colocolo y Felis eirá) de la Provincia de Cordoba. Revista Militar de Veterinaria 25, 293–300. Polomoshnov, A.P., 1979. Definitive Hosts of Toxoplasma. Problems of Natural Nidality of Diseases. Institute of Zoology, Kazakh Academy of Sciences. Alma Ata, No. 10, pp. 68–72 (in Russian). Quesnel, A.D., Parent, J.M., McDonell, W., Percy, D., Lumsden, J.H., 1997. Diagnostic evaluation of cats with seizure disorders: 30 cases (1991–1993). Journal of the American Veterinary Medical Association 210, 65–71. Rembiesa, C., Richardson, D.J., 2003. Helminth parasites of the house cat, Felis catus, in Connecticut, U.S.A. Comparative Parasitology 70, 115–119. Riley, S.P.D., Foley, J., Chomel, B., 2004. Exposure to feline and canine pathogens in bobcats and gray foxes in urban and rural zones of a national park in California. Journal of Wildlife Diseases 40, 11–22. Rodgers, S.J., Baldwin, C.A., 1990. A serologic survey of Oklahoma cats for antibodies to feline immunodeficiency virus, coronavirus, and Toxoplasma gondii and for antigen to feline leukemia virus. Journal of Veterinary Diagnostic Investigation 2, 180–183. Roelke, M.E., Forrester, D.J., Jacobson, E.R., Kollias, G.V., Scott, F.W., Barr, M.C., Evermann, J.F., Pirtle, E.C., 1993. Seroprevalence of infectious-disease agents in free-ranging Florida panthers (Felis concolor coryi). Journal of Wildlife Diseases 29, 36–49.

Roelke, M.E., Johnson, W.E., Millán, J., Palomares, F., Revilla, E., Rodríquez, A., Calzada, J., Ferreras, P., León-Vizcaíno, L., Delibes, M., O’Brien, S.J., 2008. Exposure to disease agents in the endangered Iberian lynx (Lynx pardinus). European Journal of Wildlife Research 54, 171–178. Ryser-Degiorgis, M.P., Jakubek, E.B., af Segerstad, C.H., Bröjer, C., Mörner, T., Jansson, D.S., Lundén, A., Uggla, A., 2006. Serological survey of Toxoplasma gondii infection in free-ranging Eurasian lynx (Lynx lynx) from Sweden. Journal of Wildlife Diseases 42, 182–187. Salant, H., Spira, D.T., 2004. A cross-sectional survey of anti-Toxoplasma gondii antibodies in Jerusalem cats. Veterinary Parasitology 124, 167–177. Salant, H., Markovics, A., Spira, D.T., Hamburger, J., 2007. The development of a molecular approach for coprodiagnosis of Toxoplasma gondii. Veterinary Parasitology 146, 214–220. Samad, A., Islam, R., Dey, B.C., Alam, M., 1997. Effects of corticosteroids in stray cats with natural antibodies to Toxoplasma gondii. Journal of Protozoological Research 7, 1–8. Schares, G., Vrhovec, M.G., Pantchev, N., Herrmann, D.C., Conraths, F.J., 2008a. Occurrence of Toxoplasma gondii and Hammondia hammondi oocysts in the faeces of cats from Germany and other European countries. Veterinary Parasitology 152, 34–45. Schares, G., Herrmann, D.C., Beckert, A., Schares, S., Hosseininejad, M., Pantchev, N., Vrhovec, M.G., Conraths, F.J., 2008b. Characterization of a repetitive DNA fragment in Hammondia hammondi and its utility for the specific differentiation of H. hammondi from Toxoplasma gondii by PCR. Molecular and Cellular Probes 22, 244–251. Schwab, K.J., McDevitt, J.J., 2003. Development of a PCR-enzyme immunoassay oligoprobe detection method for Toxoplasma gondii oocysts, incorporating PCR controls. Applied and Environmental Microbiology 69, 5819–5825. Sedlak, K., Bartova, E., 2006. The prevalence of Toxoplasma gondii IgM and IgG antibodies in dogs and cats from the Czech Republic. Veterinari Medicina 51, 555–558. Sedlak, K., Bartova, E., 2007. Toxoplasmoza zvirat a jeji laboratorni diagnostika v Ceske republice. Veterinarstvi 57, 562–567. Shahzad, A., Khan, M.S., Ashraf, K., Avais, M., Pervez, K., Khan, J.A., 2006. Seroepidemiological and haematological studies on toxoplasmosis in cats, dogs and their owners in Lahore, Pakistan. Journal of Protozoological Research 16, 60–73. Sharif, M., Daryani, A., Nasrolahei, M., Ziapour, S.P., 2009. Prevalence of Toxoplasma gondii antibodies in stray cats in Sari, northern Iran. Tropical Animal Health and Production 41, 183–187. Shastri, U.V., Ratnaparkhi, M.R., 1992. Toxoplasma and other intestinal coccidia in cats in Maharashtra (Parbhani). Indian Veterinary Journal 69, 14–16. Shen, L., Zhichung, L., Biaucheng, Z., Huayuan, Y., 1990. Prevalence of Toxoplasma gondii infection in man and animals in Guangdong, People’s Republic of China. Veterinary Parasitology 34, 357–360. Silva, J.C.R., Ogassawara, S., Marvulo, M.F.V., Ferreira-Neto, J.S., Dubey, J.P., 2001a. Toxoplasma gondii antibodies in exotic wild felids from Brazilian zoos. Journal of Zoo and Wildlife Medicine 32, 349–351. Silva, J.C.R., Ogassawara, S., Adania, C.H., Ferreira, F., Gennari, S.M., Dubey, J.P., Ferreira-Neto, J.S., 2001b. Seroprevalence of Toxoplasma gondii in captive neotropical felids from Brazil. Veterinary Parasitology 102, 217–224. Silva, J.C.R., Gennari, S.M., Ragozo, A.M.A., Amajones, V.R., Magnabosco, C., Yai, L.E.O., Ferreira-Neto, J.S., Dubey, J.P., 2002. Prevalence of Toxoplasma gondii antibodies in sera of domestic cats from Guarulhos and São Paulo, Brazil. Journal of Parasitology 88, 419–420. S´mielewska-Łos´, E., Pacon´, J., 2002. Toxoplasma gondii infection of cats in epizootiological and clinical aspects. Polish Journal of Veterinary Sciences 5, 227–230. Smith, D.D., Frenkel, J.K., 1995. Prevalence of antibodies to Toxoplasma gondii in wild mammals of Missouri and east central Kansas: biologic and ecologic considerations of transmission. Journal of Wildlife Diseases 31, 15–21. Smith, K.E., Zimmerman, J.J., Patton, S., Beran, G.W., Hill, J.T., 1992. The epidemiology of toxoplasmosis on Iowa swine farms with an emphasis on the roles of free-living mammals. Veterinary Parasitology 42, 199–211. Sobrino, R., Cabezón, O., Millán, J., Pabón, M., Arnal, M.C., Luco, D.F., Gortázar, C., Dubey, J.P., Almeria, S., 2007. Seroprevalence of Toxoplasma gondii antibodies in wild carnivores from Spain. Veterinary Parasitology 148, 187–192. Sohn, W.M., Nam, H.W., 1999. Western blot analysis of stray cat sera against Toxoplasma gondii and the diagnostic availability of monoclonal antibodies in sandwich-ELISA. Korean Journal of Parasitology 37, 249–256. Spain, C.V., Scarlett, J.M., Wade, S.E., McDonough, P., 2001. Prevalence of enteric zoonotic agents in cats less than 1 year old in central New York state. Journal of Veterinary Internal Medicine 15, 33–38. Spencer, J.A., Morkel, P., 1993. Serological survey of sera from lions in Etosha National Park. South African Journal of Wildlife Research 23, 60–61. Spencer, J.A., Higginbotham, M.J., Blagburn, B.L., 2003. Seroprevalence of Neospora caninum and Toxoplasma gondii in captive and free-ranging nondomestic felids in the United States. Journal of Zoo and Wildlife Medicine 34, 246–249. Sriwaranard, P., Jansawan, W., Satayapunt, C., 1981. Serologic diagnosis of toxoplasmosis in domestic cats. Kasetsart Veterinarians 2, 20–26. Sroka, J., Wojcik-Fatla, A., Dutkiewicz, J., 2006. Occurrence of Toxoplasma gondii in water from wells located on farms. Annals of Agricultural and Environmental Medicine 13, 169–175. Stephen, C., Haines, D., Bollinger, T., Atkinson, K., Schwantje, H., 1996. Serological evidence of Toxoplasma infection in cougars on Vancouver Island, British Columbia. Canadian Veterinary Journal 37, 241.

J.L. Jones, J.P. Dubey / Experimental Parasitology 124 (2010) 10–25 Stover, J., Jacobson, E.R., Lukas, J., Lappin, M.R., Buergelt, C.D., 1990. Toxoplasma gondii in a collection of nondomestic ruminants. Journal of Zoo and Wildlife Medicine 21, 295–301. Stutzin, M., Contreras, M.C., Schenone, H., 1989. Epidemiolgía de la toxoplasmosis en Chile. V. Prevalencia de la infección humana y en mamíferos domésticos y silvestres, estudiadada mediante reacción de hemaglutinación indirecta, en el Archipiélago de Juan Fernández, V Región. Boletin Chileno de Parasitologia 44, 37–40. Sukthana, Y., Kaewkungwal, J., Jantanavivat, C., Lekkla, A., Chiabchalard, R., Aumarm, W., 2003. Toxoplasma gondii antibody in Thai cats and their owners. Southeast Asian Journal of Tropical Medicine and Public Health 34, 733–738. Sumner, B., Ackland, M.L., 1999. Toxoplasma gondii antibody in domestic cats in Melbourne. Australian Veterinary Journal 77, 447–449. Svoboda, M., Svobodova, V., Konrad, J., 1988. Vztahy mezi vyskytem protilatek proti Toxoplasma gondii a klinickymi nalezy vysetrenych kocek. Veterinarni Medicina 33, 119–126. Svobodová, V., Knotek, Z., Svoboda, M., 1998. Prevalence of IgG and IgM antibodies specific to Toxoplasma gondii in cats. Veterinary Parasitology 80, 173–176. Swanson, W.F., 1999. Toxoplasmosis and neonatal mortality in Pallas’ cats: a survey of North American zoological institutions. Proceedings American Association of Zoo Veterinarians 1999, 347–350. Switaj, K., Master, A., Skrzypczak, M., Zaborowski, P., 2005. Recent trends in molecular diagnostics for Toxoplasma gondii infections. Clinical Microbiology and Infection 11, 170–176. Tenter, A.M., Vietmeyer, C., Johnson, A.M., Janitschke, K., Rommel, M., Lehmacher, W., 1994. ELISAs based on recombinant antigens for seroepidemiological studies on Toxoplasma gondii infections in cats. Parasitology 109, 29–36. Tenter, A.M., Heckeroth, A.R., Weiss, L.M., 2000. Toxoplasma gondii: from animals to humans. International Journal for Parasitology 30, 1217–1258. Thiangtum, K., Nimsuphun, B., Pinyopanuwat, N., Chimnoi, W., Tunwattana, W., Tongthainan, D., Jittapalapong, S., Rukkwamsuk, T., Maruyama, S., 2006. Seroprevalence of Toxoplasma gondii in captive felids in Thailand. Veterinary Parasitology 136, 351–355. Tsai, Y.J., Fan, C.K., Chung, W.C., Chao, P.H., 1997. Seroepidemiology of Toxoplasma gondii infection among cats in the middle and northern Taiwan. Chinese Journal of Parasitology and Parasitic Diseases 10, 11–16. Uggla, A., Mattson, S., Juntti, N., 1990. Prevalence of antibodies to Toxoplasma gondii in cats, dogs and horses in Sweden. Acta Veterinaria Scandinavica 31, 219–222. Umeche, N., 1990. Studie kokcidii u kocek v oblasti Calabar v Nigerii. Veterinarstvi 40, 516–517. USEPA, 1995. ICR protozoan method for detecting Giardia cysts and Cryptosporidium oocysts in water by a fluorescent antibody procedure. United States Environmental Protection Agency, Office of Ground Water and Drinking Water. Washington, D.C. EPA/814-B-95-003. Available from: . USEPA, 2001. Method 1623: Cryptosporidium and Giardia in water by filtration/IMS/ FA. Office of Water, U.S. Environmental Protection Agency, Washington, D.C. EPA 821-R-01-025. Vanparijs, O., Hermans, L., van der Flaes, L., 1991. Helminth and protozoan parasites in dogs and cats in Belgium. Veterinary Parasitology 38, 67–73. Venturini, L., Venturini, M.C., Omata, Y., 1992. Diagnostico de toxoplasmosis durante el periodo patente en un gato domestico. Veterinaria Argentina 9, 528– 531. Venturini, M.C., Di Lorenzo, C., Castellano, M.C., Unzaga, J.M., Venturini, L., 1995. Deteccion de anticuerpos anti-Toxoplasma gondii en gatos mediante las pruebas

25

de immunofluorescencia y de aglutinacion de latex. Veterinaria Argentina 12, 48–50. Venturini, L., Venturini, M.C., Omata, Y., Di Lorenzo, C., De Carolls, G., 1997a. Toxoplasma gondii: La respuesta inmune por IgG durante el periodo patente en un gato doméstico infectado naturalmente. Revista de Medicina Véterinaria 78, 258–260. Venturini, M.C., Castellano, M.C., Bacigalupe, D., Olivia, G., Unzaga, J.M., Risso, M.A., Arias, D., Di Lorenzo, C., Venturini, L., 1997b. Coinfeccion con Toxoplasma gondii y virus de la inmunodeficiencia felina (FIV). Parasitologia al Dia 21, 81–84. Villena, I., Aubert, D., Gomis, P., Ferté, H., Inglard, J.C., Denis-Bisiaux, H., Dondon, J.M., Pisano, E., Ortis, N., Pinon, J.M., 2004. Evaluation of a strategy for Toxoplasma gondii oocyst detection in water. Applied and Environmental Microbiology 70, 4035–4039. Vollaire, M.R., Radecki, S.V., Lappin, M.R., 2005. Seroprevalence of Toxoplasma gondii antibodies in clinically ill cats in the United States. American Journal of Veterinary Research 66, 874–877. Wainwright, K.E., Miller, M.A., Barr, B.C., Gardner, I.A., Melli, A.C., Essert, T., Packham, A.E., Truong, T., Lagunas-Solar, M., Conrad, P.A., 2007a. Chemical inactivation of Toxoplasma gondii oocysts in water. Journal of Parasitology 93, 925–931. Wainwright, K.E., Lagunas-Solar, M., Miller, M.A., Barr, B.C., Gardner, I.A., Pina, C., Melli, A.C., Packham, A.E., Zeng, N., Truong, T., Conrad, P.A., 2007b. Physical inactivation of Toxoplasma gondii oocysts in water. Applied and Environmental Microbiology 73, 5663–5666. Weigel, R.M., Dubey, J.P., Dyer, D., Siegel, A.M., 1999. Risk factors for infection with Toxoplasma gondii for residents and workers on swine farms in Illinois, USA. American Journal of Tropical Medicine and Hygiene 60, 793–798. Win, K.S., Matsumura, T., Kumagai, S., Uga, S., Konishi, E., 1997. Prevalence of antibody to Toxoplasma gondii in Hyogo Prefecture, Japan: comparison at a 10year interval. Kobe Journal of Medical Science 43, 159–168. Witt, C.J., Moench, T.R., Gittelsohn, A.M., Bishop, B.D., Childs, J.E., 1989. Epidemiologic observations on feline immunodeficiency virus and Toxoplasma gondii coinfection in cats in Baltimore, MD. Journal of the American Veterinary Medical Association 194, 229–233. Xiao, L., Alderisio, K., Limor, J., Royer, M., Lal, A.A., 2000. Identification of species and sources of Cryptosporidium oocysts in storm waters with a small-subunit rRNAbased diagnostic and genotyping tool. Applied and Environmental Microbiology 66, 5492–5498. Yamaguchi, N., MacDonald, D.W., Passanisi, W.C., Harbour, D.A., Hopper, C.D., 1996. Parasite prevalence in free-ranging farm cats, Felis silvestris catus. Epidemiologic Infection 116, 217–223. Yilmaz, S.M., Hopkins, S.H., 1972. Effects of different conditions on duration of infectivity of Toxoplasma gondii oocysts. Journal of Parasitology 58, 938–939. Yu, Y.L., Fu, L.J., Wang, M., 2006. Serological survey of Toxoplasma gondii infection in dogs and cats in Beijing. Chinese Journal of Veterinary Medicine 42, 72–76. Yu, J., Ding, J., Xia, Z., Lin, D., Li, Y., Jia, J., Liu, Q., 2008. Seroepidemiology of Toxoplasma gondii in pet dogs and cats in Beijing, China. Acta Parasitologica 53, 317–319. Yuan, W.Y., Ma, K., Yang, H.L., 2004. Survey of Toxoplasma infection in animals in Hebei Province. Chinese Journal of Schistosomiasis Control 16, 72–76. Zarlenga, D.S., Trout, J.M., 2004. Concentrating, purifying and detecting waterborne parasites. Veterinary Parasitology 126, 195–217. Zarnke, R.L., Dubey, J.P., Ver Hoef, J.M., McNay, M.E., Kwok, O.C.H., 2001. Serologic survey for Toxoplasma gondii in lynx (Felis lynx) from interior Alaska. Journal of Wildlife Diseases 37, 36–38.